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Notation

Pτ : Linear truncation operator.

R+: (0 , ∞).

R: (-∞,∞).

xτ : truncated signal.

yp: plant output in MIT algorithm.

ym: model reference output in MIT algorithm.

r: reference signal.

u: plant input.

y: plant output.

z : (u, y).

Z: set of all possible z in the interval time 0 to ∞.

zτ : experiment data in time interval (0,τ).

e: error signal.
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KD: disturbance gain.

KC : adjustable control gain.

Km: model reference gain.

σ: discrete switching events.

k: a controller.

kf : final controller in the closed-loop.

k̂L: the controller in the feedback loop.

K: controller set.

V : performance criterion.

k̂: optimal controller.

t: time.

Σ(P, k̂L): closed-loop system.
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Abstract

Adaptive control convergence has been proved for long time by using slow switch-

ing schemes through separating the two successive switching events by a posi-

tive time interval (e.g., dwell-time, average dwell-time, hysteresis switching tech-

nique). This thesis addresses the inherent limitations of some logic-based switch-

ing among infinite (i.e. continuum) set of candidate controllers. In this thesis,

we examine adaptive control convergence in the context of well-known hysteresis

switching algorithm by relaxing the usual requirement that the hysteresis con-

stant is strictly positive. Relaxing this constraint allows the adaptive controller

to converge to a unique optimum in the case of an infinite (continuum) candidate

controller set, provided that at least one controller in the controller set has the

ability to satisfy adaptive control performance.
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Chapter 1

Introduction

1.1 Brief Review of Adaptive Control Methods

In recent years adaptive control has become a topic of active research. The

concept of adaptive control is not new; control techniques based on switching

between different controllers have been used since the 1950s [DL51, WYK58].

Adaptive control has a rich and varied literature; for more details, the reader can

refer to textbooks such as [AW94, IS96, Cha87, NA89], which contain additional

explanations of the different types of adaptive control theory.

An adaptive control technique was first proposed by Draper and Li in 1952
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[DL51]. The next main step in adaptive control theory was taken in 1958 by

Whitaker et al. [WYK58]. They were planning to design an aircraft flight con-

trol system when they recognized that a fixed gain feedback control does not

help in this situation. Since the dynamics of the aircraft is changing from one

operating point to another, it needs an advanced control system that has the

ability to learn and tune its own parameters. At that time, model reference

adaptive control (MARC) was proposed by Whitaker [WYK58] to deal with the

varying system dynamics of the aircraft system. Their further work was reported

in [Whi59a, Whi62, OWK61].

One of the earliest definitions of the term “adaption” was introduced by

Drenick and Shahbender [DS57] in 1957:

adaptive systems in control theory are control systems that monitor

their own performance and adjust their parameters in the direction

of better performance.

Adaptive control is usually used to control imprecisely known plants. The

main goal of adaptive control is to achieve improved performance by choosing

among a given set of candidate controllers using real-time data and prior infor-

mation. Many studies have been published to achieve this goal. The MIT rule

was suggested by Osbourne [OWK61] and Whitaker [Whi59b]. The general idea
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behind the MIT rule is to control a stable system with unknown gain by using

a gradient descent algorithm to adjust a scalar parameter to reach zero output

difference between the modeled linear system and the actual plant (system to

be controlled), which is simply illustrated in Fig. 1.1. Both systems (reference

model and actual plant) used with the MIT rule are derived from the same ref-

erence signal, r. The key idea is to minimize the integral of the square of error

between ym and yp by adjusting Kc such that KcKD will eventually be equal to

the model reference gain Km, more detail about this algorithm can be found in

[Cha87].

Even with this straightforward method, which requires much prior informa-

tion about the plant (e.g., knowing the exact transfer function of the plant, the

plant has stable transfer function, knowing the gain’s sign, etc.). The method may

yield unpredictable poor performance or even instability in some circumstances,

as shown in [Par66, HP73]. In the 1960s, which are considered to be a golden

period for adaptive control, several studies and developments in adaptive con-

trol were introduced (e.g., stochastic control, state space techniques, Lyapunov

stability theory, dual control, etc.). These studies played a crucial role in under-

standing and improving the concept of an adaptive control system. However, the

stability and convergence of these developments were proved based on restricted

plant assumptions, like linear time-invariance, minimum phase plant, no noise,
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Figure 1.1: Gain adaption MRAC. (From Ref. [Cha87])

no time delays, known upper bound of the plant order, no external disturbances,

and so on. When one or more of these assumptions fail to hold, which is the

case in most practical situations, traditional adaptive control may not be able to

cope with the system, as shown by Rohrs [RVAS85]. Since this list of “unrealis-

tic” assumptions rarely holds in practice, a powerful and successful method was

needed to deal with the lack of instability and fill the gaps in understanding the

adaptive control weakness.

By the mid 1980s, a significant development effort had led to a new frame-
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work known as robust adaptive control. The robust adaptive control method

successfully coped with a system in the presence of bounded disturbance charac-

teristics and ensured system robustness under the assumption of some bounded

disturbances. In the late 1980s and early 1990s, several studies were published

on control theory that contributed to the development of robust adaptive control

(e.g., [IS88, ID91, DI91]). The basic idea of robust adaptive control is to design

a controller for a known nominal plant based on a given “small” bound of uncer-

tainties around the nominal model by choosing the worst case scenario controller.

Although robust adaptive control theory has been used successfully in sev-

eral applications, it has inherent limitations: in order to ensure the robustness

properties by using this method, the system may fail to achieve the optimal per-

formances. The other drawback of robust adaptive control is that the method

requires prior information about the plant and assumes a sufficiently small bound

on the uncertainties, while such information may not be available in real time or

large uncertainties might arise in practice, which will cause the real system to lie

outside the predicted uncertainty bound.

Since we are dealing with an unknown plant in most cases, these assumptions

about the plant were easily violated, with the missing information making exact

model-following impossible, as shown by a well-known example [RVAS85]. This
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situation was the motivation for several studies that searched for a smarter way

to deal with adaptive control problems without requiring numerous assumptions

about the plant and its structure. Subsequent research was directed toward re-

laxing many of the assumptions about the plant. Some of these studies succeeded

to relax some, but not all, of the assumptions, as reported in [Mor96, ABLM01].

In 1986, proof of adaptive control stability under perhaps the weakest assump-

tion in the history of adaptive control appeared in ([Mar86, FB86]). They showed

that it is possible to design an adaptive controller that will converge under only

a feasibility assumption (i.e., at least one controller in the candidate controller

set has the ability to satisfy the adaptive control performance) using pre-routed

switching among the candidate controllers until the stabilizing controller is found.

Although this idea does not require many assumptions about the plant beyond

feasibility it had few practical applications because of its shortcomings. This ap-

proach works by switching the candidate controllers one by one into the feedback

loop until the control performance is satisfied by one of them, which can cause

poor transient response. In addition, in the case of a large number of candidate

controllers, the process may require a long time for the stabilizing controller to

be switched into the loop.

A similar approach called data-driven unfalsified adaptive control was pro-
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posed by Safonov in [ST97]. This approach can overcome the above pre-routed

shortcomings through directly validating the candidate controllers by using exper-

imental data only, with no assumptions about the plant beyond feasibility. Other

unfalsified adaptive control studies can be found in ([SWS04, WS05, BBMT09,

VHDJS05, VHDJS08, ISP08, BHMT, WHK99]) and elsewhere. This algorithm

has the ability to detect whenever an active controller fails to achieve the per-

formance and to switch it out of the loop when the given data prove this failure.

Sufficient conditions for the stability and convergence of unfalsified adaptive con-

trol were proven in [SWS04, WSS04] under a feasibility assumption and the cost

detectability property of performance criterion. It has been found that if the

system is cost detectable and the feasibility assumption holds, the unfalsified

adaptive control approach always converges to a stabilizing controller.

1.2 Stability of Switched Systems

The main reason for introducing adaptive control is to ensure the satisfactory

performance (e.g., regulation and tracking problems) of a closed-loop system

by switching among a given set of candidate controllers when no single con-

troller is capable of achieving the desired performance objectives. Therefore, this

algorithm requires a system served by a multi-controller set (finite or infinite
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set of controllers) and we refer to such systems as multi-controller systems. If

the switching between controllers happens to be in a discrete form, the multi-

controller system is called a hybrid system because of the combination of discrete

dynamics associated with switching events σ and the continuous dynamics sys-

tem associated with the rest of the system. A well-defined performance criterion

should be chosen to reflect the desired performance. The whole process is or-

chestrated by a smart unit called a supervisor, which is responsible for making

a decision, at each instant of time, about when to switch and which controller

should be used next, based on the available plant input/output data and perfor-

mance criterion. A switched closed-loop system is shown in Fig. 1.2.

One serious challenge facing switching systems is occurrence of infinitely fast

switching (chattering). Chattering phenomena can occur because of fast discon-

tinuous switching and can cause unmodeled dynamics excitation and unaccept-

able system dynamics behavior. Therefore, the key method for avoiding these

phenomena is to separate the two successive switching events by a positive time

interval. These undesirable phenomena were the motivation for several stud-

ies (e.g., [Mor96, Mor97, HM99, MMG92, MGHM88]). The concept of dwell-

time switching was studied in the context of supervisory control by Morse in

[Mor96, Mor97]. In these studies, Morse showed how to introduce chatter-free

switching by using a sufficiently large dwell time.
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Figure 1.2: Switched closed-loop system

Although successful applications of switching control techniques have been

reported by using the dwell-time algorithm [Mor96, Mor97], it is not capable of

coping with the control of nonlinear systems because of the finite escape time

possibilities [HM98]. A new concept called average dwell-time was introduced by

Hespanha in [HM99]; this concept is an extension of the dwell-time technique.

In [HM99], Hespanha proved that the average time period between successive

switches should be greater than a sufficiently large “specified” constant to ensure

the exponential stability of the switched system.
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Fundamental contributions were made by Morse [MMG92] and Middleton

[MGHM88]. In [MMG92], Morse and his co-workers proved that the stability

and convergence of adaptive control can be achieved with a finite number of

switches when using a hysteresis switching algorithm under certain plant as-

sumptions. While, in [WPSS05], Wang showed that this algorithm can be more

powerful when used with just the feasibility assumption, given that the used

performance criterion has the cost-detectability property. Although the hystere-

sis switching algorithm has been applied to several successful applications (e.g.,

[MMG92, MGHM88, LHM00, HLM+01, SS08]), it has some drawbacks, espe-

cially in the case of an infinite set (e.g., containing a continuum) of candidate

controllers, as we will discuss in later chapters, which is the main source of mo-

tivation for this work.

1.3 Motivation

According to Åström and Wittenmark in [AW94]:
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In every language, ‘to adapt’ means to change a behavior to conform

to new circumstances. Intuitively, an adaptive controller is thus a

controller that can modify its behavior in response to changes in the

dynamics of the process and the character of the disturbances.

When a fixed controller is not capable of coping with unknown or time varying

plant parameters, switching among a set of candidate controllers algorithms is

needed to ensure satisfactory performance. Two different techniques for switching

between controllers have been used: continuous adaptive tuning and logic-based

switching. In both cases, a primary goal of adaptive control is to ensure the

stability and convergence of a controller to reach optimum performance. The

switching process in adaptive control is orchestrated by a supervisory unit based

on the given data and performance criterion. If there is no constraint on how

the supervisor unit works, infinitely fast switching (chattering) may occur, which

could cause an unbounded signal (instability).

Several techniques have been proposed to avoid this undesirable phenomenon.

The main goal of these techniques is to ensures a non-zero dwell time by separat-

ing the two successive switching events by a positive time interval length. One

of the most famous technique is the hysteresis switching algorithm reported in

[MMG92, MGHM88]. Under certain assumptions, the convergence and stability

11



of adaptive control systems by a finite number of switches have been proven when

using the hysteresis switching algorithm. The beauty of the hysteresis switching

algorithm is that it can cope with nonlinear systems unlike, the dwell-time algo-

rithm.

Several successful applications have been reported in adaptive control sys-

tems for both finite and infinite sets of candidate controllers when using hys-

teresis switching techniques, which can be found in ([SS08, MMG92, MGHM88,

WPSS05, HLM+01, HLM03, LHM00]) and elsewhere. Using an infinite set of

candidate controllers could create a better environment that would help the fea-

sibility assumption to hold because of the cardinality difference between finite

and an infinite sets of candidate controllers. Significant progress has been made

using such an infinite set, with the help of the hysteresis switching algorithm

[SS08, HLM03, LHM00, HLM+01]. The authors of these studies succeeded in

proving the stability and convergence of adaptive control systems using a strictly

positive hysteresis constant.

Although the hysteresis switching algorithm can play an important role in

the stability and convergence of adaptive systems, it has some drawbacks. One

of the biggest obstacles facing this algorithm is that it does not ensure optimal

performance, especially in the case of an infinite set (e.g., containing a contin-

12



uum) of candidate controllers, which means some performance may be sacrificed.

In this case, the hysteresis switching algorithm ensures the convergence of the

adaptive controller to the neighborhood of the continuum controllers within a

radius ε (hysteresis constant) far from the optimal controller.

In this thesis, we will consider the case in which the candidate controller set

K has continuum controllers. In Chapter 4, we propose the above problem and

establish a theoretical proof of adaptive control convergence to a unique optimum

controller.

13



1.4 Outline of the Thesis

This thesis is organized as follows:

◦ Chapter 2 presents an overview of the preliminary definitions and notation.

◦ Chapter 3 introduces some unfalsified adaptive control definitions and

concept needed in this thesis.

◦ Chapter 4 gives the problem formulation and results.

◦ Chapter 5 provides an example of a performance criterion satisfying suffi-

cient conditions for convergence.

◦ Chapter 6 contains a comparison between the idea introduced in this thesis

and local priority hysteresis switching logic [HLM+01].

◦ Conclusions follow in Chapter 7.

14



Chapter 2

Basic Concepts

2.1 Preliminaries

Consider a general adaptive control system Σ(P , k̂L) shown in Fig. 2.1 mapping

r 7→ (u, y), where u and y are the measured plant input and output vector sig-

nals respectively, r is reference signal, P is a plant and k̂L is the controller in the

feedback loop. The input signal of supervisor is the measured data

z :=

 u

y



15
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Figure 2.1: General adaptive control system Σ(P , k̂L)

and the output of the supervisor is the chosen k̂L where the adaptive control

law has the general form

u := k̂L(t, z)

 u

y


So at each time the supervisor will switch in the loop the best controller

among the controller set K based in measured data z and performance criterion.

Let’s denote the final controller switched in the loop by kf (z) at the time tf (z).

16



Comment 2.1.1 The controller set K may have finite or infinite (e.g containing

a continuum) number of controllers. We limit our consideration in this thesis to

the case in which the candidate controller set K has infinitely many controllers

(typically, a continuum of controllers).

Definition 2.1.1 [Saf80] Linear truncation operator Pτ : x→ xτ is given by

Pτx(t) =

 x(t), if t ∈ [0, τ ]

0, otherwise.

and xτ refer to Pτx(t) as shown below

xτ (t) =

 x(t), if t ∈ [0, τ ]

0, otherwise.

Let one possible experimental plant data for the switching adaptive system

shown in Fig. 2.1 be z = (u, y) and let Z represent the set of all possible z in

the interval time 0 to ∞. zτ represent the truncated signal z. Thus, zτ is the

experiment data in time interval (0,τ).

17



Definition 2.1.2 `2 − norm of a truncated signal Pτx is given as

‖x‖τ =

√∫ τ

0

x(t)Tx(t)dt.

Definition 2.1.3 [Ber99] Let C ⊂ Rn be a convex set and let f : Rn 7→ R be

differentiable over C then, f is strictly convex over C if

f(y) ≥ f(x) + (y − x)′∇f(x), ∀x, y ∈ C

Definition 2.1.4 [KS90] If the function f is twice continuously differentiable,

then f is strongly convex in k with parameter c if and only if ∇2
k(V (k, z, t)) ≥

c > 0 for all k.

Definition 2.1.5 [KS90] Let C ⊂ Rn be a convex set and let f : Rn 7→ R be

differentiable over C then, f is strongly convex (or uniformly convex) on C if

and only if, for any x, y ∈ C.

f(y) ≥ f(x) +∇f(x)T (y − x) + α
2
||y − x||2

where ∇2f(x) ≥ α > 0.

18



Comment 2.1.2 It is not necessary for a function to be differentiable in order

to be strongly convex.

Definition 2.1.6 [Ber99] Let C ⊂ Rn be a convex set and let f : Rn 7→ R

be twice continuously differentiable over C. then, f is strictly convex over C if

∇2f(x) is positive definite for every x ∈ C.

Lemma 2.1.1 [Ber99] Let f be a strongly convex function then, the local mini-

mum of f is also a global minimum and there exists at most one minimum of f .

Lemma 2.1.2 [Ber99] Let f be a strongly convex function in x and let x∗ be a

local minimum of f : Rn 7−→ R, then ∇xf(x∗) = 0.

Definition 2.1.7 A level set in Rn is defined as L(α)
∆
= {x ∈ Rn|f(x) ≤ α} for

some α ∈ R.

Definition 2.1.8 ν(k, z, t) is an equi-quasi-positive definite (EQPD) function

in k, that is, there exists a continuous nondecreasing scalar function φ such that

19



φ(0) = 0 and ν(k, z, t) − ν(k̂(t), z, t) ≥ φ(‖k − k̂(t)‖) > 0 for all t, all z ∈ Z

and all k − k̂(t) 6= 0.

Remark An equi-quasi-positive definite function has the same properties as posi-

tive definite function except that the minimum of equi-quasi-positive definite func-

tion occur at ∆k = 0 (i.e. ∆k = k − k̂) while the minimum of positive definite

function occur at k = 0.

Definition 2.1.9 [IS96] (Persistence of Excitation (PE)) A piecewise continu-

ous signal vector φ : R+ 7→ Rn is PE in Rn with a level of excitation α0 > 0 if

there exist constants α1, T0 > 0 such that

α1I ≥ 1
T0

∫ t+T0

t
φ(τ)φT (τ)dτ ≥ α0I, ∀t ≥ 0 (I)

Although the matrix φ(τ)φT (τ) is singular for each τ , (I) requires that φ(t)

varies in such a way with time that the integral of the matrix φ(τ)φT (τ) is uni-

formly positive definite over any time interval [t, t+ T0]. If we express (I) in the

scalar form, i.e.,

α1 ≥ 1
T0

∫ t+T0

t
(qTφ(τ))2dτ ≥ α0, ∀t ≥ 0

20



where q is any constant vector in Rn with |q| = 1, then the condition can be

interpreted as a condition on the energy of φ in all directions.

Definition 2.1.10 (second-order Taylor-theorem expansion) Let C ⊆ Rn and let

f : Rn 7→ R be twice continuously differentiable over C then,

f(x) = f(a) +∇f(a)(x− a) +∇2f(ξ)

a ≤ ξ ≤ x or ξ = αa+ (1− α)x for α ∈ [0, 1]

where the gradient ∇f(x) of the function f(x) is a row vector of size n, i.e.,

∇f(x) =
(
∂f
∂x1

(x), ∂f
∂x2

(x), · · · , ∂f
∂xn

(x)
)

the Hessian ∇2f(x) is an n× n matrix;

∇2f(x) =



∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂x2
n
(x)


21



and

x− a =



x1 − a1

x2 − a2

...

xn − an



Definitions of input-output stability related to the `2e-norm can be found

in [Zam66], which pertains to the ratio between the norm of the output z to

the norm of the input v. A slight generalization of the input-output stability

of Zames [Zam66] has been developed by Willems [Wil73, Wil76]. The role of

the α and α̃ is to prevent the denominator from assuming values too close to zero.

Definition 2.1.11 (Stability and Gain) [WPSS05] We say a system F with input

v and output z is stable if for every input v ∈ `2e-norm there exist constants β,

α ≥ 0 such that

‖zτ‖ < β‖vτ‖+α, ∀t > 0 (?)

otherwise, it is said to be unstable. Furthermore, if the (?) equation holds

with a single pair β, α ≥ 0 for all v ∈ `2e-norm, then the system F is said to be

22



finite-gain stable, in which case the gain of F is the least such β.

Definition 2.1.12 [WPSS05] (Incremental Stability and Incremental Gain) We

say that F is incrementally stable if, for every pair of inputs v1, v2 and outputs

z1 = Fv1, z2 = Fv2, there exists constants β̃, α̃ ≥ 0 such that

‖[z2− z1]τ‖ < β̃‖[v2− v1]τ‖+ α̃, ∀t > 0; (??)

and the incremental gain of F , when it exists, is the least β̃ satisfying (??)

for some α and all v1, v2 ∈ `2e.
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Chapter 3

Unfalsified Adaptive Control

3.1 Definitions in Unfalsified Adaptive Control

Theory

The beauty of using the Morse-Mayne-Goodwin [MMG92] hysteresis switching

algorithm with unfalsified adaptive control is that it is possible to adjust the

controller’s parameters based only on the measured data without any assump-

tions about the plant beyond feasibility, with convergence ensured for any strictly

positive hysteresis constant [SS08]. In this method, the potential performance of

every candidate controller is evaluated directly from the measured data using

some suitably defined performance criterion, without trying to identify the ac-
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tual process. This algorithm is typically fast to converge because it does not

require inserting controllers in the feedback loop to be falsified.

The main contribution of the unfalsified adaptive control algorithm is that,

the algorithm does not require any assumption about the plant (i.e. plant-

assumption-free method) in order to ensure the stability of the system, given

the feasibility of the adaptive control problem and a cost detectable performance

criterion. The feasibility is defined as the existence of at least one controller in the

candidate controller set that has the ability to stabilize the system. The cost-

detectability property is a condition of the performance criterion that ensures

closed-loop stability for the switched multi-controller adaptive control (MCAC)

system whenever stabilization is feasible. For this reason, an adaptive control

system that employs cost-detectability has been called a “safe adaptive control

systems” [WPSS05].

In this chapter, some important concepts and definitions of unfalsified adap-

tive control are presented. Further details about unfalsified adaptive control can

be found in [SS08, WPSS05, JS99].

Definition 3.1.1 [JS99] Given a set of measurements of I/O data (u, y) and a

25



candidate controller ki ∈ K a fictitious reference signal for ki is a hypothetical

reference signal r̃i that would have produced exactly the same measurements data

(u, y) had the candidate controller ki been in the feedback loop with the unknown

plant during the entire time period over which the measurements data (u, y) were

collected.

Definition 3.1.2 [SS08] The adaptive control problem is said to be feasible if a

candidate controller set K contains at least one controller that achieves stability

and performance goals.

Comment 3.1.1 It is unknown a prior which controller k in a controller set K

that achieves the satisfactory performance.

Definition 3.1.3 [SS08] A controller K is said to be a feasible controller if it

satisfies given stability and performance constraints.

Definition 3.1.4 [WPSS05] Given V, K and a scalar γ ∈ R, we say that a

controller k ∈ K is falsified at time τ with respect to cost level γ by past mea-

surement information zτ if V (k, z, τ) > γ. Otherwise the control law k is said to
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be unfalsified by zτ .

Definition 3.1.5 [WPSS05] Let r denote the input and let z :=

 u

y

 denote

the resulting plant data collected while k̂L(t, z) is in the loop. Consider the adap-

tive control system Σ(P , k̂L) of Fig. 2.1 with input r and output z :=

 u

y

.

The pair (V,K) is said to be cost detectable if, without any assumptions on the

plant P and for every k̂L(t, z) ∈ K, the following statements are equivalent:

1). V (kf , z, τ) is bounded as τ increases to infinity;

2). The stability of the system Σ(P , k̂L(τ, z)) is unfalsified by (r, z).

Definition 3.1.6 [SS08] Stability of the system Σ : r 7→ z is said to be falsified

by the data (r, z) if

sup
τ∈R+,‖r‖τ 6=0

‖z‖τ
‖r‖τ =∞

Otherwise, it is said to be unfalsified.
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Chapter 4

Results

4.1 Problem Formulation and Preliminary Re-

sults

Consider an unfalsified adaptive control system Σ(P , k̂L) shown in Fig. 4.1 map-

ping r 7→ (u, y), where u and y are the measured plant input and output vector

signals respectively, r is reference signal, P is unknown plant and k̂L is the con-

troller in the feedback loop. The input signal of supervisor is the measured data

z :=

 u

y


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Figure 4.1: Unfalsified adaptive control system Σ(P , k̂L)

and the output of the supervisor is the chosen k̂L where the adaptive control

law has the general form

u := k̂L(t, z)

 u

y



29



So at each instant of time the supervisor will switch in the loop the best con-

troller among the controller set K based in measured data z and performance

criterion.

In this thesis, we call the scalar valued function, V : K×Z×R+ → R+∪{∞},

a performance criterion. It is used to evaluate candidate controllers k based on

past data zτ . The performance criterion V (k, z, τ) assumed to be causally depen-

dent of z, that is, for all τ > 0 and all z ∈ `2,

V (K, z, τ) = V (K, zτ , τ)

where zτ is the truncated signal z from initial to the current time τ .

Definition 4.1.1 Consider a continuum controllers set K (e.g. K ⊂ Rn).

Definition 4.1.2 The optimal controller k̂(t), if exists, at t is defined as

k̂(t) = argmin
k ∈ K

V (K, z, t)
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Assumption 4.1.1 The performance criterion V (k, z, t) is continuous in k and

t.

Lemma 4.1.1 [Rud76] Every nonempty set of real numbers which bounded above

has a supremum.

Assumption 4.1.2 Adaptive control problem is feasible (Def. 3.1.2).

Comment 4.1.1 (i.e. ∃M ∈ R ; s.t. V (k̂(t), z, t) ≤M <∞)

Let VL(z) = sup
t
V (k̂(t), z, t)

Assumption 4.1.3 The performance criterion V (k, z, t) is monotonically in-

creasing in t, V (k, z, t2) ≥ V (k, z, t1) ∀t2 ≥ t1 and all k.

Lemma 4.1.2 V (k̂(t2), z, t2) ≥ V (k̂(t1), z, t1) for all t2 ≥ t1 and all k.
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Proof

(by monotonicity property) V (k, z, t2) ≥ V (k, z, t1) ∀t2 ≥ t1 (1)

(by definition 4.1.2) V (k̂(t), z, t) ≤ V (k, z, t) (2)

(from (1)) V (k̂(t2), z, t2) ≥ V (k̂(t2), z, t1)

(from (2)) ≥ V (k̂(t1), z, t1)

⇒ V (k̂(t2), z, t2) ≥ V (k̂(t1), z, t1) ∀ t2 ≥ t1

⇒ V (k̂(t), z, t) monotonically increasing sequence. ♦

Lemma 4.1.3 [Rud76] If V (k̂, z, t) is monotonically increasing sequence in R.

Then V (k̂, z, t) converges if and only if it is bounded above.

Assumption 4.1.4 V (k̂(t), z, t) unique for each t ∈ R+.

Lemma 4.1.4 Let V : K × Z × R+ → R+ ∪ {∞} be a continuous equi-quasi-

positive definite function in k, k ∈ Rn, and continuous monotonic increasing in
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t. Assume that V (k̂(t), z, t) is bounded above. Then, there exists a time tM such

that k̂(t) lies in a compact subset L, L ⊂ K, for all t > tM .

Proof

Define a family of functionals ft(k) = V (k, zt, t) ∀t ≥ tM . Let α = sup
t
V (k̂(t), z, t)

(see lemma 4.1.1). Consider L(α) to be a level set in Rn (Def. 2.1.7).

Since L(α) ⊂ Rn it is sufficient to show that L(α) is bounded and closed. Define

s(t) to be

s(t) =


min
ρ →∞

sup
‖k‖≥ρ

V (k, z, t), if exists

∞, otherwise.

Since V (k, z, t) is continuous equi-quasi-positive definite function in k and has

a unique minimum k̂(t) at each t (assumption 4.1.4), then s(t) > V (k̂(t), z, t). Let

ε(t) = s(t)−V (k̂(t), z, t) > 0. By lemma 4.1.2, V (k̂(t), z, t) monotonic increasing

sequence. Since V (k̂(t), z, t) is monotonic increasing sequence bounded above by

α, then for every ε(t) > 0 there exists tM such that α − V (k̂(t), z, t) < ε(t) for

all t ≥ tM (this is true by lemma 4.1.3).
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We know that for all t ≥ tM the condition α− V (k̂(t), z, t) < ε(t) is satisfied.

⇒ α− V (k̂(t), z, t) < s(t)− V (k̂(t), z, t) ∀t ≥ tM

⇒ α < s(t) ∀t ≥ tM

In what follows, we will show that L(α) is bounded and closed for all t ≥ tM (i.e.,

ft(k) = V (k, zt, t)).

First, we show L(α) is bounded for t ≥ tM . Suppose to the contrary that

L(α) is not bounded. Then there exists a sequence {km} ⊆ L(α) such that

lim
m→∞

‖km‖ = ∞. Since ft(k) is equi-quasi-positive definite function, lim
m→∞

ft(km)

≥ s > α (i.e. ∃N ∈ N such that ∀` ≥ N ft(k`) > α ). Then {km} 6⊂ L(α), which

contradicts the above assumption. Hence, L(α) is bounded.

Next, we show that L(α) is closed for t ≥ tM : Let {km} ⊆ L(α) be a conver-

gent sequence, and kf = lim
m→∞

km. Since ft is continuous, ft(kf ) = lim
m→∞

ft(km).

Also, ft(km) ≤ α ∀t. Then, ft(kf ) = lim
m→∞

km ≤ lim
m→∞

α = α, so kf ∈ L(α). Thus

L(α) is closed and bounded, therefore compact. ♦
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Lemma 4.1.5 [Ber99](Weierstrass theorem) Let K be a non empty subset of Rn

and let V : K 7→ R be lower semicontinuous at all points of K. If K is compact,

then k̂(t) = argmin
k ∈ K

V (K, z, t) exists.

Lemma 4.1.6 If V (k, z, t)−V (k̂(t), z, t) ≥ φ(‖k−k̂(t)‖) then, V (k̂(t2), z, t2) −

V (k̂(t1), z, t1) ≥ φ(‖k̂(t2)− k̂(t1)‖) ∀ t2 ≥ t1.

Proof

Since, V (k, z, t)− V (k̂(t), z, t) ≥ φ(‖k − k̂(t)‖)

⇒ V (k̂(t2), z, t1) − V (k̂(t1), z, t1) ≥ φ(‖k̂(t2)− k̂(t1)‖)

(by monotonicity property) V (k̂(t2), z, t2) ≥ V (k̂(t2), z, t1) ∀ t2 ≥ t1

⇒ V (k̂(t2), z, t2)−V (k̂(t1), z, t1) ≥ V (k̂(t2), z, t1)−V (k̂(t1), z, t1) ≥ φ(‖k̂(t2)−

k̂(t1)‖) ∀ t2 ≥ t1

⇒ V((t2), z, t2)− V (k̂(t1), z, t1) ≥ φ(‖k̂(t2)−k̂(t1)‖) ∀ t2 ≥ t1. ♦

35



Lemma 4.1.7 [Rud76] In Rn, every Cauchy sequence converges.

4.2 Main Result

Theorem (Main Result) Consider the feedback adaptive control system Σ(P , k̂L)

in Fig. 2.1. Assume that the adaptive control problem is feasible, and the associ-

ated performance criterion V (K, z, t) is monotone increasing in t and continuous

in k. Assume further that V (K, z, t) is equi-quasi-positive definite function in k

(Def. 2.1.8) and V (k̂(ti), z, ti) unique for each ti. Then, the adaptive control

system converges to a unique controller as time proceeds.

Proof

(from lemma 4.1) V (k̂(t2), z, t2) − V (k̂(t1), z, t1) ≥ φ(‖k̂(t2) − k̂(t1)‖)

∀ t2 ≥ t1

Since, VL(z) ≥ V (k̂(t2), z, t2)

⇒VL(z)− V (k̂(t1), z, t1) ≥ V (k̂(t2), z, t2)− V (k̂(t1), z, t1)

≥ φ(‖k̂(t2)− k̂(t1)‖)
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(from lemma 4.1.3) for each ε > 0 there exists tN such that

ε ≥ |V (k̂(t2), z, t2)− V (k̂(t1), z, t1)| ≥ φ(‖k̂(t2)− k̂(t1)‖) ∀ t1, t2 ≥ tN

Since, φ is nondecreasing continuous function and satisfies φ(0) = 0. Then ∀δ > 0

∃ tN such that

ε(δ) ≥ φ(‖k̂(t2)− k̂(t1)‖). Therefore, δ ≥ ‖k̂(t2)− k̂(t1)‖ ∀ t1, t2 ≥ tN .

By Cauchy criterion (lemma 4.1.7) k̂(t) converges. Since k̂(t) is unique (assump-

tion 4.1.4), Hence the adaptive control system converges to a unique controller. ♦
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Chapter 5

Performance Criterion

5.1 Performance Criterion Example

Consider an unfalsified adaptive control system Σ(P ,ΘL) shown in Fig. 5.1 map-

ping r 7→ (u, y), where u and y are the measured plant input and output vector

signals respectively, r is reference signal, P is unknown plant and ΘL is the con-

troller in the feedback loop.

Consider a controller structure in Fig. 5.2, where θii is a constant parameter,

θii ∈ Θ, Θ is a parameter vectors, Θ ∈ R2n and Θ̄ is a set of parameter vectors.

Then the control low has the form
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Figure 5.1: Unfalsified adaptive control system Σ(P ,ΘL)

u(t) = r(t) + θ1ifi1u(t) + θ2ifi2y(t)

where fi1 = L−1(Fi1(s)) and fi2 = L−1(Fi2(s)),

θ′1i and θ′2i are n× 1 vectors,

θ′1i =



θ11

θ12

...

θ1n


, θ′2i =



θ21

θ22

...

θ2n


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Controller

Figure 5.2: Control configuration

and Θ is 1× 2n vector,

Θ = (θ11 θ12 · · · θ1n θ21 θ22 · · · θ2n)

and Fi1(s) and Fi2(s) are n× 1 vectors of stable filters as shown below

Fi1 =



F11

F21

...

Fn1


, Fi2 =



F12

F22

...

Fn2


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Consider the performance criterion V (Θ, z, t). The optimal controller param-

eters Θ∗(t) at each instant of time is defined as

Θ∗(t) = argmin
Θ ∈ Θ̄

V (Θ̄, z, t)

Fictitious reference signal r̃ is not the true signal (Def. 3.1.1). For each Θi there

is a fictitious reference signal r̃i that would have produced exactly the same mea-

surements data (u, y) had the candidate controller Θi been in the feedback loop

with the unknown plant during the entire time period over which the measure-

ments data (u, y) were collected. Given data z = (u, y) and controller Θ with the

structure in Fig. 5.2. Its fictitious reference signal r̃(Θ, z) would be

r̃(Θ, z) = T (Θ)z

= u− θ1iFi1(s)u− θ2iFi2(s)y

where T (Θ) is a fictitious reference generator of the controller configuration

in Fig. 5.2. The fictitious reference generator T (Θ) structure is illustrated in Fig.

5.3.

A fictitious error signal ẽ is the error between the fictitious reference signal

and the actual plant output y, which can be written as
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Controller

Figure 5.3: Fictitious reference generator

ẽi = r̃i − y

The fictitious error signal for the data z = (u, y) and controller Θ with the

structure in Fig. 5.2 is

ẽ(Θ, z) = r̃(Θ, z)− y

= u− θ1iFi1(s)u− θ2iFi2(s)y − y
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Controller

Figure 5.4: Control configuration example

An example of the performance criterion and the conditions under which it

ensures convergence according to the previous theorem may be constructed as

follows. Consider a controller structure in Fig. 5.4 Its fictitious reference signal

would be

r̃(Θ, z) = u− k1u− y

where θ1i, θ2i, fi1, and fi2 in this example are
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θ′1i =



k1

0

...

0


, θ′2i =



1

0

...

0


and

fi1 =



1

0

...

0


, fi2 =



1

0

...

0



And the associated fictitious error signal is

ẽ(Θ, z) = u− k1u− y − y

= u(1− k1)− 2y

Consider the well-known performance criterion integral norms of estimation

errors

V (Θ, z(t), τ) =

∫ τ

0

‖e(t)‖2dt
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In the unfalsified adaptive algorithm, the only available information about

the actual plant is the data (u, y), so we will use the fictitious error signal instead

of the true error. This fictitious error signal should converge to the true signal if

the fictitious reference generator has a stable structure (See Reference [ST97]).

V (Θi, z(t), τ) =

∫ τ

0

‖ẽi(t)‖2dt =

∫ τ

0

‖u(t)(1− k1)− 2y(t)‖2dt

Then,

∇k1V (Θi, z(t), τ) = −2

∫ τ

0

u(t)(u(t)(1− k1)− 2y(t))dt

and

∇2
k1
V (Θi, z(t), τ) = 2

∫ τ

0

u(t)2dt

Definition 5.1.1 We say that the system is persistently excitated if the hessian

is strictly positive definite for all t sufficiently large.
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Under the persistent excitation assumption, the function V (Θi, z(t), t) is uni-

formly convex function in k for sufficiently large time t.

For this example, we can derive explicit conditions on ẽi that guarantee

parameter convergence by considering u2 does not tend to zero. Therefore,

whenever the systems is persistently excited, this performance criterion has the

the uniform convexity property. The persistent excitation (PE) property de-

fined by us is crucial in many adaptive schemes where parameter convergence

is one of the objectives and is closely related to the persistent excitation of

[NA87, Eyk74, BS86, Bit84, AB66, And77].

The main idea of this thesis is to introduce a new algorithm for adaptive

controller convergence without using any constraint on the switching scheme (re-

moving the constraints on the switching scheme, “e.g. dwell-time, average dwell-

time, hysteresis switching”). The idea introduces in this thesis is investigated in

the context of the unfalsified adaptive control algorithm. We believe that the

unfalsified adaptive control algorithm is one of the best algorithms in adaptive

control theory since it requires the minimum number of assumptions (i.e., at least

one controller in the controller set has the ability to satisfy the adaptive control

performance) about the plant to ensure convergence and stability.
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Such a contribution could also be used under a different adaptive control

algorithm (e.g., multiple model adaptive control) to enhance the performance, as

we will show in the next chapter.
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Chapter 6

Comparison

Adaptive control using a continuum set of candidate controllers has recently re-

ceived considerable attention, with several successful applications being reported

(e.g., [HLM+01, HLM03, SS08]). Some of these applications have been a source

of inspiration for the idea introduced in this thesis. Our main goal in this thesis is

to establish the conditions for performance criterion under which the convergence

constraint on the switching schemes (i.e., strictly positive hysteresis constant) has

been relaxed.

The aim of this chapter is to show, by a literature review, how this new idea

could be useful in relaxing some of the unnecessary assumptions. In [HLM+01,
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HLM03], Hespanha and his coworkers introduced new modifications to a hys-

teresis switching technique that have the ability to deal with an infinite set of

candidate controllers (typically, a continuum of controllers) and ensure adaptive

control convergence. The two switching logics are called hierarchical hystere-

sis switching and local priority hysteresis switching logic, and were reported in

[HLM03] and [HLM+01], respectively. The primary idea of the first switching

logic relies on a partition of the continuum set into a finite number of subsets.

The switching strategy in this logic is based on two stages. The first step is

to choose controllers “system’s parameters” that satisfy the minimum value for

the performance criterion “monitoring signal” in each subset and then compare

the signal values produced by these controllers to select the one that satisfies

the overall minimum. For further details on hierarchical hysteresis switching, we

refer the reader to [HLM03, LHM00].

The main idea of the second switching logic, local priority hysteresis switching

logic, relies on giving priority to the neighborhood’s parameters before switching

to another one, as we will present in more detail in the sequel.

The concepts of these switching logics are almost the same and the switching

between controllers “system’s parameters” occurs in a discrete switching form

even though we use a continuum set of candidate controllers. Combining discrete
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switching with continuous dynamical systems will drive the designer to deal with

hybrid dynamical systems instead of dealing with continuous systems. Since this

will make the systems more complicated to deal with, we try to avoid this situ-

ation in this thesis by introducing continuous adaption. In this chapter, we will

choose the second switching logic, local priority hysteresis switching, for our case

study. We perform a comparison and try to show how the idea presented in this

thesis could contribute in this context and relax some assumptions.

We now present some concepts and equations about local priority hysteresis

switching logic. For more details, the reader can refer to [HLM+01]. The inputs

of the local priority hysteresis switching logic are continuous signals, µp, p ∈ P,

where µp assumed to be strictly positive and monotone increasing in t and P is a

compact set. Define a set Dγ

Dγ(q) := {p ∈ P : |q − p| ≤ γ}

where γ is a proper positive constant and | · | is a norm function in P. The output

of the switching logic, at each instant of time, is a switching signal, σ(t). Pick a

hysteresis constant h > 0 and set σ(0) = argmin
p∈P

{µp(0)}. Suppose that at time

ti, σ has just switched to some q ∈ P and kept fixed until a time ti+1 > ti such

that the following inequality is satisfied:

(1 + h) min
p∈P
{µp(ti+1)} ≤ min

p∈Dγ(q)
{µp(ti+1)}
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At this time, we set σ(ti+1) = argmin
p∈P

{µp(ti + 1)}. By repeating these steps

we can generate a sequence of switching signal which will converge as time in-

crease.

In this study, the authors stated that the constant γ should be sufficiently

small to ensure the tractability property for subset Dγ. It is reasonable to ask

about the kind of upper bound needed for the constant γ to ensure this prop-

erty? Furthermore, if there is one, does this bound work for all possible per-

formance criteria? The answers to these questions can be found in [SS08]. In

[SS08], Stefanovic succeeded to avoid these difficulties by using the uniform con-

tinuity property for the performance criterion. In this study, the constant γ is

adjusted by choosing the hysteresis constant, h, using the continuity property of

the function. The uniform continuity property of the performance criterion helps

to ensure that the adaptive control system does not switch to another controller

outside the neighborhood of radius γ, until all of the controllers in this neighbor-

hood have been falsified. More details can be found in [SS08].

In all of above studies, the only way to ensure adaptive control convergence

for the case of a continuum set of candidate controllers is by adding constraints to

the switching logics through using strictly positive constants. These constraints

may prevent the adaptive control system from reaching optimality, as we will

51



show in Section 6.2.

6.1 Compactness Property

In [HLM+01], the authors used the “well-known” integral norms of the estima-

tion errors performance criterion and the compactness property of the parameter

set, P. In this part of the study we will show that the idea of this thesis can

relax the compactness assumption by using the same performance criterion used

in [HLM+01].

Suppose ep = (pTA+ b)xE − y and consider the integral norms of estimation

errors performance criterion [HLM+01]

µp(τ) =

∫ τ

0

‖ep(t)‖2dt =

∫ τ

0

((pTA+b)xE(t)−y(t))2dt (I)

Then,

∇p(µp(τ)) = 2

∫ τ

0

((pTA+ b)xE(t)− y(t))xE(t)TATdt

and

∇2
p(µp(τ)) = 2

∫ τ

0

AxE(t)xTE(t)ATdt
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Definition 6.1.1 We say that the system is persistently excitated if the hessian

is strictly positive definite for all t sufficiently large.

Under the persistent excitation assumption, the function µp(t) is uniformly

convex function in p for sufficiently large time t.

Let p̂(t) = arginf
p

µp(t), t ∈ R+.

Lemma 6.1.1 Let µp : R×R+ → R+ ∪ {∞} be a continuous function in p, and

continuous monotonic increasing in t. Suppose that the system is persistently

excited and that µp̂(t)(t) is bounded above. Then, there exists a time tC such that

p̂(t) lies in a compact subset L, L ⊂ R, for all t > tC.

Proof

Since p̂(t) minimizes µp(t), we have∇p(µp̂(t)(t)) = 0 (1)

Since µp(t) is uniformly convex in p then∇2
p(µp(t)) ≥ α > 0 (2)

By Definition 2.1.5, equations (1) and (2), µp(t) can be written as
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µp(t) ≥ µp̂(t)(t) + α
2
‖p− p̂(t)‖

Hence, µp(t) is equi-quasi-positive definite function (Def. 2.1.8) with a unique

minimum and the proof proceeds like the proof of lemma 4.1.4. ♦

6.2 Optimality

The difficulty of using the hysteresis switching algorithm [MMG92] and its mod-

ifications [HLM+01, HLM03, SS08] is that when using the usual requirement

that the hysteresis constant is strictly positive, this constraint may prevent the

adaptive control system from achieving optimality. For this reason, our aim in

this thesis is to reexamine the adaptive control convergence in the context of the

well-known hysteresis switching algorithm by setting the hysteresis constant to

zero (relaxing the switching scheme constraint). Relaxing this constraint allows

the adaptive controller to converge to a unique optimum in the case of an infinite

(continuum) candidate controller set as t→∞.

Another noticeable difficulty with the local priority hysteresis switching logic

is that other factors could prevent the adaptive control system from reaching

optimality besides the hysteresis constant, including the choice of the other con-

stant γ and the performance criterion “monitoring signal”, µp. Since there is
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no upper bound for choosing the constant γ and no clear rules for choosing the

performance criterion, this drawback could be worse with bad choice for constant

γ and the performance criterion.

Lemma 6.2.1 Local priority hysteresis switching logic may stop switching (be-

come prematurely stuck with one controller in the feedback loop) even though there

are controllers in the controller set that satisfy the condition

(1 + h)µpother(ti) < µpfl(ti)

where µpfl is the monitoring signal associated with controller in the feedback

loop and µpother is the monitoring signal associated with other controllers in the

controller set.

Proof

Let’s start with with σ(0) = argmin
p∈P

{µp(0)} and at certain time ti, σ has

just switched to some q ∈ P. Suppose that at time ti+1 > ti there exists a glob-

ally minimizing pm such that, pm = argmin
p∈P

{µp(ti+1)} = argmin
p∈Dγ(q)

{µp(ti+1)} and

pm ∈ Dγ(q). Then equation

(1 + h) min
p∈P
{µp(ti+1)} ≤ min

p∈Dγ(q)
{µp(ti+1)}
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becomes

h ∗min
p∈P
{µp(ti+1)} ≤ 0

Since µ(t) is positive function, this condition cannot be satisfied (i.e., if µppm is

the monitoring signal associated with the controller pm and µpq is the monitoring

signal associated with the controller q the system will not switch to the controller

pm that satisfies the global minimum “pm = argmin
p∈P

{µp(ti+1)}” whatever the dif-

ference between µppm and µpq). ♦

6.3 Convergence

The primary goal of this thesis is to establish conditions for the performance

criterion under which the convergence constraint on the switching schemes (i.e.,

strictly positive hysteresis constant) may be relaxed. In this section, we shall

get to the main point of this chapter by showing that using the same perfor-

mance criterion that was used in our case study [HLM+01], it is possible to

prove adaptive control convergence without a strictly positive hysteresis constant

(e.g., without h > 0 and γ > 0), which allows the adaptive controller to converge

to a unique optimal solution where the “optimal performance has been satisfied”.
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Figure 6.1: Supervisory control block diagram

To make this comparison we need to recall some required and necessary no-

tations and definitions from [HLM+01].

The switching process in the local priority hysteresis switching logic is orches-

trated by a supervisory unit, which is responsible for switching into the feedback

loop, at each instant of time, the best controller from the controller set = based

on the measured data and performance criterion. This supervisor consists of

three subsections, as shown in Fig. 6.1.

1) Multi-estimator ΣE — a dynamical system whose inputs are the output y
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and the input u of the process P and whose outputs are the signals yp, p ∈ P.

2) Monitoring signal generator ΣM — a dynamical system whose inputs are

the estimation errors ep = yp−y, p ∈ P and whose outputs µp, p ∈ P are suitably

defined integral norms of the estimation errors, called monitoring signals.

3) Switching logic ΣS — a switched system whose inputs are the monitoring

signals µp, p ∈ P and whose output is a switching signal σ taking values in P,

which is used to define the control law u.

State-space equations for the supervisory system is described in detail in

[Mor96], recall the state-space equations for the three subsystems. As p ranges

over P, let realizations of the transfer functions of the candidate controllers be:

ẋC = ApxC + bpy

u = kpxC + rpy

where xC is controller state and Cq is one controller parameter in the candidate

controller set = (i.e. {Cq : q ∈ =}). It have been assumed that there is a con-

troller in the candidate controller set that able to solve the tracking error and

regulation problems for each unknown process P .
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The state space realization of multi-controller C can be define as:

ẋC = AσxC + bσy

u = kσxC + rσy

and multi-estimator ΣE has the following realization:

ẋE = AExE + bEy + dEu

yp = cpxE, p ∈ P

where xE is estimated state and its assumed to be available for the controller in

all time, AE is a stable matrix and d is a process disturbance.

The matrices cp, p ∈ P is design in such way for each p ∈ P, cp exists and

unique (See Reference [Mor96] Section IV). Moreover, for the case of P to be

continuum cp, p ∈ P assumed to depend linearly on p to ensure the tractability

property (See Reference [Mor96] Section XI). So the matrix cp can be represented

in the form:

cp = pTA+ b

For SISO system, A is n × n nonzero matrix, p is n × 1 unknown process

parameters and b is 1× n vector.
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In our case study [HLM+01], authors used the “well-known” performance

criterion integral norms of estimation errors:

µp(τ) =

∫ τ

0

‖ep(t)‖2dt

where ep = yp − y and yp = cpxE so, µp can be written as

µp(τ) =

∫ τ

0

‖(pTA+ b)xE(t)− y(t)‖2dt

or

µp(τ) =

∫ τ

0

((pTA+ b)xE(t)− y(t))T ((pTA+ b)xE(t)− y(t))dt

Then,

∇p(µp(τ)) = 2

∫ τ

0

((pTA+ b)xE(t)− y(t))xE(t)TATdt

and

∇2
p(µp(τ)) = 2

∫ τ

0

AxE(t)xTE(t)ATdt

Then µp is uniformly convex in p when the hessian satisfies ∇2
p(µp(t)) > ε > 0,

which holds since the systems is persistently excited.

60



For this example, we can derive explicit conditions on ep(t) that guarantee

parameter convergence by considering ‖xE‖2 does not tend to zero. Therefore,

whenever the systems is persistently excited, this performance criterion has the

the uniform convexity property. The persistent excitation (PE) property de-

fined by us is crucial in many adaptive schemes where parameter convergence

is one of the objectives and is closely related to the persistent excitation of

[NA87, Eyk74, BS86, Bit84, AB66, And77].

Under the persistent excitation assumption, the function µp(t) has a unique

minimum parameter p̂(t) “controller” for sufficiently large time t, let the optimal

parameter p̂(t) at each t is defined as

p̂(t) = argmin
p∈P

µp(t)

In the sequel, we will use the same assumptions that have been used in

[HLM+01], except:

1) Compactness property: we showed that by using the same performance

criterion that has been used in [HLM+01] we were able to relax the compactness

property for the parameter set P (See Section 6.1).

2) Strictly positive constants (i.e., h > 0 and γ > 0): these two constants have
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been used in local priority hysteresis switching logic to ensure adaptive control

convergence for the case of a continuum set of candidate controllers. In this sec-

tion, we provide the main result for this chapter, which relies on proving that the

adaptive controller convergence for the case of a continuum set of candidate con-

trollers without using any constraints on the switching logic (i.e., h = 0, γ = 0).

Relaxing these constraints allows the adaptive control system to overcome these

limitations and ensure the optimal performance.

Theorem (Main Result) Consider the feedback adaptive control system in Fig.

6.1. Assume that the adaptive control problem is feasible (Def. 3.1.2), and that

the associated performance criterion “µp(t)” is suitably defined integral norms of

the estimation errors. Assume further that µp(t) is monotone increasing in t and

continuous in t and p. Then, the adaptive control system converges to a unique

optimal controller as time proceeds.

Proof

By using Taylor’s theorem the performance criterion µp(t) can be written as:

µp(t) = µp̂(t)(t) + (p− p̂(t))T ∇p(µp̂(t)(t)) + 1
2
(p− p̂(t))T∇2

p(µξ(t)(t)) (p− p̂(t))

Where ξ(t) can be written as αp+ (1− α)p̂(t) ; α ∈ [0, 1]
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Since p̂(t) minimizes µp(t), we have∇p(µp̂(t)(t)) = 0 (1)

Since µp(t) is uniformly convex in p then∇2
p(µξ(t)(t) ≥ c > 0 (2)

By definition 2.1.5, equations (1) and (2), µp(t) can be written as

µp(t) - µp̂(t)(t) ≥ c
2
‖p− p̂(t)‖2

or, equivalently,

µp̂(tm)(tn) - µp̂(tn)(tn) ≥ c
2
‖p̂(tm)−p̂(tn)‖2 (?)

From monotonicity ⇒ µp̂(tm)(tm) ≥ µp̂(tm)(tn) ∀tm ≥ tn

Then (?) can be written as

µp̂(tm)(tm) - µp̂(tn)(tn) ≥ c
2
‖p̂(tm)−p̂(tn)‖2 ∀tm ≥ tn (??)

(from lemma 4.1.3) for each ε > 0 there exists tN such that

µp̂(tm)(tm) - µp̂(tn)(tn) ≤ ε ∀tm, tn ≥ tN

Then, (??) can be written as
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c
2
‖p̂(tm)− p̂(tn)‖2 ≤ ε ⇒ ‖p̂(tm)− p̂(tn)|| ≤

√
2ε

c︸ ︷︷ ︸
δ

∀ tm, tn ≥ tN

It is clear that as ε→ 0 implies that δ → 0

By Cauchy criterion (lemma 4.1.7) p̂(tn) converges. Since p̂(tn) is unique by

uniformly convexity property and since for each parameter p there is a unique

controller that satisfy the adaptive control performance then, the adaptive control

system converges to a unique optimal controller. ♦

6.4 Performance Improvement

The main reason for introducing the supervisory control approach [Mor96, Mor97]

is to ensure a satisfactory performance (e.g., regulation and tracking problem) of

a closed-loop system by switching among a given set of candidate controllers. The

basic idea behind the controller selection strategy is to determine which nominal

process model is associated with the smallest monitoring signals, and then select

the corresponding candidate controller.
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According to the certainty equivalence concept [Mor92]:

The nominal process model with the smallest performance criterion

signal “best” approximates the actual process, and therefore the

candidate controller associated with that model can be expected to do

the best job of controlling the process.

The contribution of the local priority hysteresis switching logic in the context

of supervisory control is to introduce a new switching logic that has the ability

to deal with the case where the unknown parameters belong to a continuum set.

Now, suppose the unknown process P shown in Fig. 6.1 whose input and

output signals u and y are the input of multi-estimator ΣE where the output

of ΣE is yp, p ∈ P. Each yp would converge to y if the transfer function of P

was equal to the nominal process model transfer function ϑp in the absence of

disturbances, unmodeled dynamics and noises. Disturbance input and noise sig-

nal are represented by d and n respectively. Assumed that the transfer function

of P from u to y belongs to a family of admissible process model transfer functions

F =
⋃
p∈P
F (p) (???)
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for each p, F (p) denotes a family of transfer functions ‘centered’ around some

known nominal process model transfer function ϑp where p is a parameter taking

values in some index set P. In the absence of noises, unmodeled dynamics and

disturbances equation (? ? ?) will be equivalent to

V =
⋃
p∈P
ϑp

In our case study [HLM+01], the authors assumed that a candidate controllers

set = = {Cp : p ∈ P} is chosen in such a way that for each p ∈ P; Cp will satisfy

the adaptive control performance, where P is any element of F.

In the sequel we assume that all assumption in [HLM+01] are hold except the

compactness property of P that has been relaxed in Section 6.1.

6.4.1 Performance In the Presence of Disturbances

In the Multiple model adaptive control, the adaptive control problem is placed in

a setting of a standard optimization problem and the nominal process model with

the smallest performance criterion signal is the model that best fits the available

data (’certainty equivalence’). Therefore the candidate controller associated with
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this model can be expected to do the best job of controlling the process.

As shown in Section 6.2, local priority hysteresis switching logic may fail to

optimize the performance criterion (I) while the new idea introduced in this thesis

(which relies on relaxing the local priority hysteresis switching logic constraints)

ensure the optimal signal for the performance criterion (I) as shown in Section

6.3. By certainty equivalence concept [Mor92], our idea improves the adaptive

control performance.

6.4.2 Performance In the Absence of Disturbances

For the case of free of disturbance, unmodeled dynamics and noise the transfer

function F (p) is equal to ϑp, p ∈ P. In Section 6.3, we showed that our idea suc-

ceeded to ensure convergence to optimal solution “yp → y” therefore the exact

match between the actual process P and nominal process model ϑp is achieved,

since there is a controller parameter that has the ability to achieve adaptive con-

trol performance for each ϑp, p ∈ P, then targeting performance is satisfied as

t→∞.
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6.5 Summary

The idea introduces in this thesis is investigated in the context of the unfalsified

adaptive control algorithm. We believe that the unfalsified adaptive control al-

gorithm is one of the best algorithms in adaptive control theory since it requires

the minimum number of assumptions “feasibility” about the plant to ensure con-

vergence and stability.

The aim of this chapter is to show that such contribution could also be used

under different adaptive control algorithm like multiple model adaptive control

in order to enhance the system performance. Common goal for the different

adaptive control algorithms is to satisfy the best performance for the system under

minimum assumptions about the plant and its structure. Therefore combining

this contribution with the unfalsified adaptive control may help to achieve this

goal.
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Chapter 7

Conclusion and Future Direction

7.1 Summary

In this thesis we discussed recent progress in the design and analysis of the hys-

teresis switching algorithm for the case of a continuum set of candidate con-

trollers. The main contribution of this thesis is to study the Morse-Mayne-

Goodwin hysteresis switching algorithm for continuous adaptive control and es-

tablish condition on performance criterion under which the hysteresis constant

may be set to zero. It has been shown that using an equi-quasi-positive definite

performance criterion is sufficient to ensure adaptive control convergence. The

primary focus of this dissertation is to relax the usual requirement that the hys-
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teresis constant is strictly positive. Relaxing this constraint allows the adaptive

controller to converge to a unique optimum, yielding an improved performance

(regulation and tracking), as shown in Chapter 6.

7.2 Future Directions

The method of controlling a system using adaptive control is not new. The idea

was discovered more than a half century ago. It seemed natural to switch be-

tween different controllers when no single controller was capable of achieving the

performance goal. At that time, the stability and convergence proofs of adaptive

control were based on several plant assumptions, which could cause limited prac-

tical applications of this method. Since then, a fair amount of research has been

done to relax these assumptions. It has been found that some of these assump-

tions are not crucial and can be relaxed.

In this thesis, we examined continuously switched adaptive control systems

in the context of unfalsified adaptive control, without using any of the usual con-

straints on the switching process (e.g., hysteresis switching, dwell-time, average

dwell-time), and were able to theoretically prove the system convergence to a

unique “optimum” controller based on the feasibility and some assumptions on

the performance criterion used for controller selection.
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The main contribution of the unfalsified adaptive control algorithm is that

it does not require any assumption about the plant (i.e., plant-assumption-free

method) in order to ensure the stability of the system, given the feasibility of the

adaptive control problem and a cost detectable performance criterion.

• The cost-detectability property is a condition of the performance criterion that

ensures closed-loop stability for the switched multi-controller adaptive control

(MCAC) system whenever stabilization is feasible. For this reason, an adaptive

control system that employs cost-detectability has been called a “safe adaptive

control system” [WPSS05]. Unfortunately, the performance criterion introduced

in this thesis does not have this property. The possibility of achieving cost-

detectable safe adaptive control with continuous switching is a topic for future

research.

• Unfalsified adaptive control approach assumes that, there is at least one con-

troller in a candidate controller set has the ability to satisfy the adaptive control

performance (feasibility assumption). Feasibility is the weakest assumption under

which adaptive asymptotic system stability and performance can be guaranteed.

The question of the relation of feasibility assumption to other assumptions com-

monly used in adaptive control will be examined.
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