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Abstract

In this paper, we provide a sufficient condition for as-
ymptotic stability of a system with a single time delay
in states expressed as a linear matrix inequality (LMTI).
We formulate the time delay into a inverse uncertainty
configuration.

1 Introduction

There have been several studies about stability criteria
for time-delay systems. These criteria can be classi-
fied into two categories according to their dependence
upon delay size : delay-dependent or delay-independent.
Delay-independent criteria provide conditions for sta-
bility regardless of size of time delays. Thus, they tend
to be more conservative than delay-dependent crite-
ria. Delay-dependent conditions are dependent upon
the size of time delays and can give information on the
delay margin. However, these conditions could provide
much conservative result if a system is stable for any
time delay.

Fu et al.]2] provided two delay-dependent results for ro-
bust stability using the integral quadratic constraints
(IQCs) approach and the linear matrix inequalities
(LMIs) technique. Kolmanovskii et al.[4] gave a mixed
delay-dependent/delay-independent condition for lin-
ear systems with delayed states. Scorletti[9] proposed
an extension of the y analysis to address the analysis of
systems with non-rational uncertainties in a connected
set and obtained convex sufficient conditions involving
linear matrix inequalities. And many of recent papers
on time-delay systems, like [1] and [5], derived suffi-
cient conditions for stability in the form of LMI using
Lyapunov functionals.

Most of researches on time-delay systems expressed
time-delay uncertainties as simple multiplicative un-
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certainties, viz., either A(jw) = e 7“7 or A(jw) =
e 7«7 — 1. In this paper, we formulate the time-delay
uncertainty as A(jw) = jw%(e*jw —1). The advan-
tage of this representation is that A(jw) can be said
to be strictly proper, so it can be used when it is re-
quired for the A(jw) to be strictly proper. We propose
a sufficient condition for asymptotic stability of a sys-
tem with single time-delay in states which is expressed
as an LMI. We transform a frequency dependent ma-
trix inequality that came from IQC theorem to an
equivalent non-frequency dependent LMI via Kalman-
Yakubovich-Popov Lemma.

This paper is organized as follows : The problem formu-
lation is given in Section 2. Notation and preliminary
background are described in Section 3. Our main re-
sult is provided in Section 4. Numerical example and
discussion are given in Section 5 and Section 6. Finally,
conclusions are stated in Section 7.

2 Problem Formulation

Consider an uncertain linear time invariant system with
single time-delay in a state

&(t) = Aox(t) + Aqz(t — 1) (1)

where 7 € [0,7] and Ay + A4 € R**™ is Hurwitz, that
is, the system is stable if there is no time delay. 7 is
assumed to be constant but unknown.

Problem 1 Given a system (1), find a delay Tmaz
which maintains the system (1) asymptotically stable
for any positive T which is smaller than Tpqz.

3 Preliminaries

Definition 1 (¢f. [6]) Consider the feedback system in
Figure 1 where G, A are causal operators and G has
transfer function G(s). We say that the interconnec-

tion G and A is well-posed if the operator {_IA _IG}



Table 1: Notation

Symbol Meaning
R Set of all real numbers
R+ Set of positive real numbers
C Set of all complex numbers
Cy+ Set of all complex numbers with positive
real part
AT Transpose of A
A(s)” A(—5)T, conjugate transpose
Z(jw) Fourier transform of the signal z(t)
<wmy> =[O
= 2 [, 9(w) 2 (jw)dw

has a causal inverse. The interconnection is stable if,
additionally, the inverse is bounded.

Theorem 1 (The IQC Theorem) /3, 6] Let G(s) €
RHE™ and let A : £5.]0,00) — LI]0,00) be a
bounded causal operator. Assume that:

i) for every a € [0, 1], the interconnection of G and
A, is well-posed where A, is a parameterization
of A which satisfies

a) A= Aa|a:1;
b) A, is bounded and causal for a € [0,1],
¢) there exists v > 0 such that

[1Aa, (y) =

for all a1, a9 €1]0,1],

Ao, W) < vlew = azl - lyll (2)

it) the interconnection of G and Ay |a=o is stable,

iti) for every a € [0,1], the IQC defined by II is
satisfied by A, that is,

<H {Aay(y)} : [Af(y)b >0, ()

iv) there exists € > 0 such that

{G(;w] ") [Ggw)} < el VweR (4)

Then, the feedback interconnection of G and A is sta-
ble.

It is often possible to use the linear parameterization
A, = aA. Then, conditions a), b) and c) of the above
theorem can be omitted [3, 6].

_+_
< ?47 Ag + Ay
A(s) —~ H

u

Figure 2: Time-delay system configuration in inverse un-

certainty formulation where A(s) = = (e™*" —

1) ST

Lemma 1 (Kalman-Yakubovich-Popov Lemma)
[10] Given A € R™™ B € R"™* and symmetric ma-
triz Q € R X(n+k) there exists a symmetric matriz
P e R*™™™ such that

[ATP +PA PB

BTP 0:|+Q<0, (5)

if and only if there exists some constant € > 0 such that

{(jwl - A)—lB] "0 [(jwf - A)™'B

7 7 ]+GI§0 (6)

for all w € R.

4 Main Result

Lemma 2 The system (1) is asymptotically stable if
and only if Ag + Aq is Hurwitz and

A(s,7) = sI — (I — 7A(s)Ag) " (Ao + 4g)  (7)
is nonsingular for all s € C,, where

Afs) = (e — 1) (®)

ST

Proof:
and only if

The system (1) is asymptotically stable if

A(s,7) = s — Ag — Ag e *T (9)



is nonsingular for all s € C;. Suppose that A(S,T) is
singular for some s € C;.. Then, there exists a non-zero
vector x such that

~

0 = A(s,m)z = (s —Ag— Age *")x
= (S[ —Ag— Ay — Ad(eisT — 1))37
= (sI —Ayg— Aqg — TA(s)Aq s)z

= (I —TAAg)s — (Ao + Ag)) z
= (sI— (I —TA(s)Aq) H(Ao + Ag))
= A(s,7)x

Whence, A(s, 7) is singular some s € C;, which proves
sufficiency. Necessity can be proved in the same way.
|

Let us decompose the matrix Ay as
Ag=HE, HeR™ 6 EecR™" (10)
where ¢ < n, and H and E are of full rank.

With inverse uncertainty formulation and Lemma 2, we
propose a sufficient condition for stability of the system
(1), which is main theorem of this paper.

Theorem 2 (Main Theorem) Suppose that P €
R*™" @ € RI*? gnd S € RI*?. Then, the system
(1) is stable if there exist symmetric matrices P > 0,
Q > 0, and a skew-symmetric matriz S such that

ATP+PA+CTQC PB+CTS+0CTQD
BTP+STC+DTQC -Q+DT'QD+STD+ DTS
<0 (11)

where

A=Ay+Aq, B=1H, C=EA, D=rEH. (12)

Proof: If we let the time-delay uncertainty be
A(jw) = jw%(e_ﬂ” — 1), a state-space representation
of the system G(s) with u as a input and y as a output
(see Fig. 1 and Fig. 2) can be expressed as

i = Az + Bu,
y = Cz + Du, (13)
u=A(y)

where
A=Ay+ Ay, B=7H, C=FEA, D=7EH

By Lemma 2, the asymptotic stability of the time-delay
system (1) is equivalent to that of the system (13).

ST —-Q

=Q - ?’A(jw)*QA(jw) + aSA(jw) + aA(jw)*ST
= Q - ®A(jw) QA (jw)

= QL - ?|A(jw)|]*)

>0

for all w € R and a € [0,1] since SA(jw) = 0 and
[JA(jw)]|eo < 1. SA(jw) = 0 comes from the fact that
A(jw)I is diagonal and S is skew-symmetric.

And we also have

Gjw)]" g [Glw)
I I
_ [(jwI — A)~'B]"[C D *H C D][(jwI—-A)"'B
- I 0 I 0 I I
<0
from the Lemma 1 and Eq. (11).
Thus, by Theorem 1, the system (1) is stable. ™

We can find a upper bound on the delay margin 7,4,
for a system (1) by maximizing 7 subject to (11) in
Theorem 2. This is an LMI problem, which can be
easily solved using software package.

5 Numerical Example

Counsider the autonomous system of (1) with

-2 0 -1 0
Ao = [0 0.25]’ A = {—0.1 —0.85] (14)

which is the same example considered in Fu et al.[2].
The estimate of maximum delay margin using Theo-
rem 2 I8 Timae = 0.9999. We used the LMITOOL[8] de-
signed by ENSTA Optimization and Control Group in
solving the LMI problem (11).

As comparisons, we can see that the estimate of allow-
able maximum time delay is Ty,q,; = 0.6417 when the
Theorem 6 in [2] is used and it iS Tyq, = 0.9848 when
the Theorem 7 in [2] is used while the optimal value
for the system with the given parameters, Ag and Ag,
is Tope = 1.54[7]. We can see that our result is less
conservative than [2] even without finding a SISO filter
f(s) such that |f(jw)| > |WL&|, Vw € R in order to
apply the Theorem 7 in [2].

6 Discussion

We have derived a sufficient condition for asymptotic
stability of time-delay system (1) in the form of an



LMI (11) while Fu et al.[2] provided two different LMI
stability criteria for time-delay systems. The dimension
of our LMI, (n+4gq) x (n+q), is less than those in [2], (n+
2q) x (n+ 2q). Therefore, our LMI is superior to those
in [2] from the computation point of view. We also
performed Monte Carlo simulations which generated
random matrix Ay and Ay which satisfy the Hurwitz
condition of A = Ay + A; and compared the results
from our LMI and LMI in [2]. We found that 578 out
of 600 cases produced less conservative results than the
method of [2].

7 Conclusion

We have presented a delay-dependent stability crite-
rion for a continuous-time system with single MIMO
time-delay in states. This is a sufficient condition ex-
pressed in the form of LMI, which can be solved using
standard computer software tools. Monte Carlo simula-
tions demonstrated that in 96% of the cases considered
our approach was less conservative than that of [2]
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