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Abstract. As robust control theory has matured, a key challenge has been the need for a more flexible theory
that provides a unified basis for representing and exploiting evolving information flows from models, noisy data, and
more. Our work on unfalsified control is providing a foundation for the development of such a theory. The results of
research in progress are expected to facilitate the design of feedback control systems with the ability to better exploit
evolving real-time information flows as they unfold, thereby endowing control systems with the intelligence to adapt
to unfamiliar environments and to more effectively compensate for the uncertain and time-varying effects, equipment
failures and other changing circumstances.

“The essential matter is an intimate association of hypothesis and observation.”
Bertrand Russell — 1949

1 Introduction

The robust multivariable control theory that has evolved over the past quarter century includes methods
based on the Hy, p/Kp,-synthesis, and BMI/LMI/IQC theories. The robust control theory offers a major
improvement over earlier algebraic and optimal control methods. It has enabled the design of controllers with
greater tolerance of uncertainty in system model and, hence, increased reliability. Commercial computer-aided
control synthesis tools like those introduced by Chiang and Safonov [14,15], Balas et al. [16] and Gahinet et
al. [17] have made robust control synthesis routine, and because of this aerospace and industrial applications
have now become commonplace. Further, on-going improvements based on LMI/IQC robust control problem
formulations are continuing to expand the range of problems that can be cast and solved within the robust
control framework (e.g., [18]).

Yet, despite the assurances of greater uncertainty tolerance and better reliability, the existing Hoo /K-
synthesis, and BMI/LMI/IQC techniques for robust control design have an Achilles heel: They are introspec-
tive theories. They derive their conclusions based on assumed prior knowledge of models and uncertainties.
They are dependent of the premise that uncertainty models are reliable, and they offer little guidance in the
event that experimental data either invalidates prior knowledge of uncertainty bounds or, perhaps, provides
evidence of previously unsuspected patterns in the data. That is, the standard Ho, p/K,,-synthesis, and
BMI/LMI/IQC robust control techniques fail in the all too common situation in which prior knowledge is
poor or unreliable.

Data-driven design tools are needed to make the overall robust control design process more complete
and reliable. Ideally, these tools should incorporate mechanisms for evaluating the design implications of
each new experimental data point, and for directly integrating that information into the mathematics of
the robust control design process to allow methodical update and re-design of control strategies so as to
accurately reflect the implications of new or evolving experimental data. Recent thrusts in this direction
are control-oriented identification theory and [19-38] and, more recently, unfalsified control [39-43]. While
both theories are concerned with the difficult problem of assimilating real-time measurement data into the
otherwise introspective process of robust control design, the unfalsified control theory is a particular interest
because it directly and precisely characterizes the control design implications of experimental data.
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2 Data-Driven Robust Control Design
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Fig. 1. The data-driven theory of unfalsified control closes data-driven portion of the design loop by focusing squarely
and precisely on the control design implications of data.

Validation — or more precisely unfalsification — of hypotheses against physical data is the central aspect
of the process of scientific discovery. This validation process allows scientists to sift the elegant tautologies
of pure mathematics in order to discover mathematical descriptions of nature that are not only for logically
self-consistent, but also consistent with physically observed data. This data-driven process of validation is
also a key part engineering design. Successful engineering design techniques inevitably arrive at a point where
pure introspective theory and model-based analyses must be tested against physical data. But, in control
engineering in particular, the validation process is one that has been much neglected by theoreticians. Here,
the theory tying control designs to physical data has for the most part focused on pre-control-design ’system
identification’. Otherwise, the mathematization of the processes of post-design validation and re-design has
remained relatively unexplored virgin territory. In particular, a satisfactory quantitative mathematical theory
for direct feedback of experimental design-validation data into the control design process has been lacking,
though this seems to be changing with the recent introduction of a theory of unfalsified control by us in [43].

Theory: Validation and Unfalsification

Unfalsified control is essentially a data-driven adaptive control theory that permits learning based on physical
data via a process of elimination, much like the candidate elimination algorithm of Mitchell [44,45]. The
theory concerns the feedback control configuration in Figure 2. As always in control theory, the goal is to
determine a control law K for the plant P such that the closed-loop system response, say T, satisfies certain
given specifications. Unfalsified control theory is concerned with the case in which the plant is either unknown
or is only partially known and one wishes to fully utilize information from measurements in selecting the
control law K. In the theory of unfalsified control, learning takes place when new information in measurement
data enables one to eliminate from consideration one or more candidate controllers.
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Fig. 2. Feedback control system.

The three elements that define the unfalsified control problem are (1) plant measurement data, (2) a
class of candidate controllers, and (3) a performance specification, say Tspec, consisting of a set of admissible
3-tuples of signals (r,y,u). More precisely, we have the following.

Definition [43] A controller K is said to be falsified by measurement information if this information is
sufficient to deduce that the performance specification (r,y,u) € Tepee ¥r € R would be violated if that
controller were in the feedback loop. Otherwise, the control law K is said to be unfalsified. |

To put plant models, data and controller models on an equal footing with performance specifications,
these like Type. are regarded as sets of 3-tuples of signals (r,y,u) — that is, they are regarded as relations
in R xY xU. For example, if P: U — Y and K : R Xx Y — U then

P={(r,yu)|y=Pu}

K= {(r,y,u)u—K m }

And, if J(r,y,u) is a given loss-function that we wish to be non-positive, then the performance specification
Tspec would be simply the set

Topee = { (ry,0)| T (r,y,u) <0} (1)

On the other hand, experimental information from a plant corresponds to partial knowledge of the plant P.
Loosely, data may be regarded as providing a sort of an “interpolation constraint” on the graph of P — i.e.,
a ‘point’ or set of ‘points’ through which the infinite-dimensional graph of dynamical operator P must pass.

Typically, the available measurement information will depend on the current time, say 7. For example,
if we have complete data on (u,y) from time 0 up to time 7 > 0, then the measurement information is

characterized by the set [43]
(’LL - udata)
P =0 2
{ (¥ — Ydata) @)

where P, is the familiar time-truncation operator of input-output stability theory (cf. [46,47]), viz.,

A fax(t), f0<t<T
[Pra)(t) = {0, otherwise.

Piata 2 {(r,y,u) ERXUXY

The main result of unfalsified control theory is the following theorem which gives necessary and sufficient
conditions for past open-loop plant data Pgq:, to falsify the hypothesis that controller K can satisfy the
performance specification Typec.

Unfalsified Control Theorem [43] A control law K is unfalsified by measurement information Py, if,
and only if, for each triple (ro,yo, %) € Paata NK, there exists at least one pair (Gg, §o) such that (ro, Jo,to) €
Pdata NKN Tspec~ O

The unfalsified control theorem says simply that controller falsification can be tested by computing an
intersection of certain sets of signals. It turns out that for the robot manipulator example considered in this
paper, this involves a linear programming computation, as the is shown in the next section. A noteworthy
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feature of the unfalsified control theory is that a controller need not be in the loop to be falsified. Broad
classes of controllers can be falsified with open-loop plant data or even data acquired while other controllers
were in the loop. Adaptive control is achieved within the this framework by using the unfalsification process
as the key element of a supervisory controller (cf. [48,49]). The supervisor switches an unfalsified controller
into the feedback loop whenever the current controller in the loop is amongst those falsified by observed
plant data — see Fig. 3.
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Fig. 3. The unfalsification process mathematically sifts controllers to find those that are consistent with both
performance goals and physical data. It plays the role of a ‘supervisor’ that chooses one of the currently unfalsified
controllers to put in the aircraft’s control loop.

Conceptual Challenges and Controversies

“Heavier-than-air flying machines are impossible.”
Lord Kelvin, President, British Royal Society, 1895

A typical initial response from knowledgeable academic researchers has been to dismiss unfalsified control
theory out of hand as a sort of mathematical ‘snake oil’. The claim that unfalsified control permits control
design without a plant models has tended to be regarded as too outlandish to be taken seriously. Certainly
it is true that unfalsified control theory has its limitations — and that the theory needs improvement. But,
these ‘snake oil’ objections to unfalsified control have been fallacious — based on intuition derived from
inappropriate analogies. However, thoughtful control theorists have been genuinely surprised and impressed
by the simplicity and power of the unfalsified control theory as a mathematical basis for explaining feedback
and learning, as a practical method for designing more reliable adaptive controllers, and as a data-driven
technique for off-line tuning of non-adaptive feedback control gains.

Following are some typical examples of fallacious objections to unfalsified control:

1. Unfalsified control seems unacceptably weak in its conclusion of mere unfalsification, given that familiar
theories of control seem to offer stronger predictions like global stability and optimality derived deductively
through the analysis of models even without the aid of validating data.
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However, this objection fails to recognize the fundamental distinction between conclusions deduced from
model or assumptions and conclusions obtained via a mathematical analysis of experimental data: Beliefs
about the validity of models and assumptions, and therefore any conclusions based in whole or in part on
mathematical models, are not necessarily scientific truths — they might be falsified by future physical
data. Unfalsified control augments introspective model-based robust control design methods by providing
a quantitative methodology for closing the loop on the control design process when, at the experimental
validation stage, the model-based robust control design proves to be unsatisfactory.

2. Unfalsified control theory incorporates no sensor noise models, and therefore must perform poorly.

In unfalsified control, control system performance criteria are framed directly in terms of observed vari-
ables. This runs counter to established intuition for some control theorists who have grown overly com-
fortable with traditional control problem formulations that characterize physical measurements as noise-
corrupted observations of the unseen internal ‘reality’ of a ‘true’ model. Given this tradition as having
more truth content than physical observations, it has been easy to succumb to the temptation to assume
that the models and their noise are the ‘true’ explanation of observed physical data. The fact is that
unfalsified control does accommodate noise quite well when suitably ‘soft’ performance criteria are em-
ployed. And, moreover, the performance criteria used in unfalsified control are quite flexible, and may
even be associated with, and derived from, traditional stochastic noise hypotheses.

3. Unfalsified adaptive controllers are claimed to be quick and sure-footed discover good control gains, even

non-minimum-phase plants. This is too good to be true, and so must be false.
This erroneous belief apparently arises from knowledge that popular model reference adaptive control
schemes are relatively sluggish and have been proved to fail for non-minimum-phase plants. But, unfalsi-
fied control is not model reference control and does not suffer its limits. It is fast and sure-footed because,
unlike other adaptive schemes such as model reference control, unfalsified control theory is based on a
precise analysis of the mathematical constraints induced by (1) performance criteria, (2) physical data
and (3) the control law.

4. Unfalsified adaptive controllers make use of the inverse of the controller transfer, so they must be sensitive

to plant model error and noise.
Apparently some control theorists are confused by the thought of controller inversion, since it triggers
unrelated memories concerning known difficulties with controllers that rely on inverting the plant itself. In
any case, the controller inversion is not an essential part of theory but merely one of several conceivable
ways to perform the computations that are necessarily associated with any logically correct test of
consistency a controller hypothesis against performance goals and physical data.

5. Anyone who claims to be able to design a controller without a mathematical model of the plant must be
a charlatan, ergo unfalsified control must be the product of charlatans. A seasoned reviewer of our paper
[43] put this objection very eloquently, saying

“Modern science is model-based. If to abandon models is not to abandon mathematical sci-

ence...”
In such arguments, one may perhaps glimpse elements of the conflict between the introspective belief-
driven methods of ancient Platonic science and the observation-driven methods of post-Galileo experi-
mental science. Such fallacious views are based on the knowledge that established control theories (like
the theories of Plato) are heavily introspective, relying on models and assumptions to deduce such things
as stability or optimality. They fail to take account of the fact that it may be possible to devise depend-
able data-driven methods for discovering good control designs without models via careful mathematical
analysis of the logical implications of experimental observation alone. They also fail to notice that models
also play a key role in the unfalsified control method, but that the models used in unfalsified control
are models of candidate controller hypotheses, not plants. Indeed, a careful comparison of unfalsified
control theory and system identification theory shows that they are conceptually the same, except that
in unfalsified control one identifies controller models (not plant models) and performance criteria involve
closed-loop control errors (not open-loop plant model errors).

The foregoing are representative of fallacious criticisms that have been levied by experienced naysayers
who were convinced that unfalsified control is a heavier-than-air theory that could not possibly fly. They
were wrong. Unfalsified control theory is taking off. It is proving to be a legitimate and useful vehicle for
data-driven control design, even if the initial flights have been somewhat ungainly and short.
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Design Studies

The 1895 declaration of the Lord Kelvin not withstanding, the Wright brothers flew in 1903. As for unfalsified
control theory, accumulating case study evidence is likewise proving the intuition of experienced naysayers
to be wrong. Over the past three years several design studies have confirmed the theoretical expectation that
unfalsified control can be useful in closing the outer data-driven loop on the control design process. Unfalsified
control theory has proved effective in applications involving both off-line controller gain tuning and in real-
time adaptive control design studies. These initial design studies have helped us to better understand the
potential of the unfalsified control theory, as well as limitations of the current theory.

Missile Autopilot One design study that we conducted involved using an unfalsified controller to robustly
discover PID controller gains for an adaptive missile autopilot ‘on the fly’ in real-time [9]. Figure 4 summarizes
the results of the missile design. In all trials, the response of the adaptive loops was swift and sure-footed —
in stark contrast to what would be expected from traditional model reference adaptive methods.
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Fig. 4. A data-driven unfalsified missile controller would have abilities to adaptively discover solutions in real-time
to compensate for sudden in-flight changes and damage.

Robot Manipulator Arm We used to unfalsified methodology to adaptively tune the parameters of a
nonlinear ‘computed-torque’ controller for a robot manipulator arm [50] — see Fig fig:robot. The arm proved
to be capable of a quick and reliable control response despite large and sudden variations in load mass. Again,
the controller performed with precision, despite noise, dynamical actuator uncertainties and without prior
knowledge of the plant model or its parameters. Results for the robot design were surefooted and precise,
with the controller maintaining an order of magnitude more precise control than a similar model-reference
adaptive controller during widely fluctuating manipulator load variations; the controller was also more robust
in that it was capable of maintaining precise control even during load variations that destabilized a similarly
structured model-reference adaptive controller.
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Industrial Process Control Although very few researchers other than ourselves have as yet examined
unfalsified control methods, those who have taken this step have predictably confirmed the effectiveness
of unfalsified control methods in several industrial process control applications. For example, Kosut [35]
examined unfalsified controller for direct data-driven off-line control gain tuning under the assumption of
a noise-free linear-time-invariant plant. Woodley, How and Kosut and used the theory with good result for
data-driven discovery of good control gains for a laboratory control problem involving two spring-connected
masses. Also, Collins and Fan [36] successfully used the unfalsified control methodology in a run-to-run
setting to tune gains off-line in an industrial weigh-belt feeder control design study. More recently, there
have been some promising adaptive control applications to machine control by Razavi and Kurfess [37,38]
based on the unfalsified control methodology.

Universal PID Controller One application of the theory involved implementing a PID-based adaptive
‘universal’ controller implemented as MATLAB Simulink block based on the unfalsified theory [10] — see
Fig 5. The controller was capable of sifting through a bank of candidate controllers in real-time, stabilizing
an open-loop unstable plant without knowledge of the plant model despite sensor noise and without noticeable
transients.

candidate comrollar
parmimeter viloes

'

Conmoller
r Unfalsificarion |—
/‘f i Proceduns
] |
Un%;mmrn L
T Plant Ei

o™
£s + |

&i

Fig. 5. In one study, we designed an adaptive ‘universal controller’ having a PID structure and based on the
unfalsified control theory. Simulations using MATLAB Simulink showed that the adaptive unfalsification loops were
so fast that the controller could was able to stabilize an unstable plant without prior plant knowledge and without
appreciable transients.

3 Summary

The main goal of unfalsified control theory has been to close the loop on the adaptive and robust control design
processes by developing data-driven methods to complement traditional model-based methods for the design
of robust control systems. The theory produced so far has served to strengthen the theoretical foundation of
control theory, paving the way for carefully reasoned extensions of feedback control theory into the realm of
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intelligent and learning systems. The unfalsified theory lays the foundation for a more complete and rigorous
understanding of feedback that focusing squarely on the quantitative design implications of physical data,
thereby enabling the design of robust control systems with the ability to autonomously enhance both their
robustness and their performance by exploiting real-time data as it unfolds. Such designs will be better able
to compensate for uncertain and time-varying effects, equipment failures and other changing circumstances.
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