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EDITORIAL

The seven papers in this issue reflect traces of a revolution in thought that began more than
twenty years ago when the dominant focus of control theory research shifted from optimality
to robustness. The multivariable stability margin concept has become such an integral part of
present day control theory that it is difficult to imagine the time not so very long ago when the
concept lacked a mathematical representation and the tools of multivariable stability margin
analysis were yet to be identified. Therefore, it seems desirable to revisit that time and to
examine the events that facilitated, and necessitated, this remarkable paradigm shift.

It began in 1975 at the MIT Electronic Systems Laboratory headed by Michael Athans.
Linear multivariable control had quietly arrived at a state of crisis. Theorists who had had the
highest expectations for optimal LQG feedback design theory were being jolted by disappointing
results from initial attempts to apply the theory to apply the theory to realistic problems.
In one classified design study carried out by Systems Control Inc. under the aegis of D. L.
Kleinman with Michael Athans as consultant, and LQG controller for a Trident submarine
caused the vessel to unexpectedly surface in nonlinear simulations involving moderately rough
seas (see the comments of Athans cited on page 40 of Reference 1). In another example, a
paper describing the disappointing results of an LQG control design study for the F-8C Crusader
aircraft2 concluded euphemistically with the observation that “The study has pinpointed certain
theoretical weaknesses. . . as well as the need for using common sense pragmatic techniques to
modify the design based on ‘pure’ theory.” The problem — yet to be clearly identified and
labeled — was of course inadequate attention to multivariable stability margin issues.

Prior to 1975, mathematical formulations of linear control problems had not yet captured
the concept of stability robustness. Augering things to come, G. Zames had made the following
suggestive remark in 1966.3

“One of the broader implications of the theory here concerns the use of functional
analysis for the study of poorly defined systems. It seems possible, from only coarse
information about a system, and perhaps even without knowing details of internal
structure, to make useful assessments of qualitative behavior.”

Even earlier, Popov4 had coined the term “hyperstability” to describe the kind of nonlinear
robustness which is implicit in the inequalities of Lyapunov stability theory. But by 1975 the
suggestive remarks of Zames and Popov had had little impact. The robustness implications of
nonlinear stability theory had yet to be developed. The small-gain theorem which was soon to
emerge as a core concept in robust control theory was still regarded as an exotic plaything for
nonlinear system theorists. There was no notation and no terminology to help focus the powerful
mathematical minds of control theorists on the fundamental practical issue of robustness, though
there was a remarkably prescient 1967 paper by Medanic44 applying LQ game theory to the
design of uncertainty tolerant control laws.

To be sure, there had been warnings of the impending crisis for linear multivariable control
theory. As early as 1971, Athans47 had ominously remarked, ‘It appears that the most pressing
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need is related to. . .modeling inaccuracy.’ And Rosenbrock and McMorran5 had observed that
the much touted LQG theory, though optimal, had failed to address the “essential require-
ment. . . that changes of loop gains. . . in all combinations, should leave the system with an ad-
equate stability margin.” Rosenbrock had anticipated the multiloop stability margin problem
and had already developed a crude multiloop extension of classical frequency-response design
methods based on diagonal dominance which, for nearly decoupled feedback loops, allowed one
to retain the simplicity of classical design one-loop-at-a-time design methods, while giving one
a tool for quantitatively assessing tolerance of simultaneous gain variations in several feedback
loops. Unfortunately, others who followed Rosenbrock’s lead in developing multiloop exten-
sions of classical frequency-response design methods (e.g., References 6 and 7) had lost sight of
the simultaneous gain-variation issue. Engineers were still designing multiloop feedback control
systems one-loop-at-a-time, oblivious to the simultaneous gain variation issue. Rosenbrock’s
warning about the importance of simultaneous loop gain variations had gone unheeded.

By 1975, the much lamented gap between academic theory and engineering practice in the
control field had grown to prodigious proportions. Despite the fact stability margin was an
integral part of the classical Bode-Nyquist theory for single-loop control, post-1950’s textbooks
(with the notable exception of Horowitz8) had reduced the phase-margin concept to little more
than an aid for estimating closed-loop dominant-pole locations. Since 1959, introspective acad-
emic control theorists had been at work developing elegant, but fanciful control design techniques
which were guaranteed to result in stable and even optimal feedback controllers — provided that
one began with a sufficiently accurate plant model. But, as had been well known to classical
control theorist such as I. Horowitz8, the trouble with simply supposing that a model is suffi-
ciently accurate is that the quantitative accuracy of a plant model is in fact a key determinant
of what can, and what cannot, be achieved with feedback. Alas, in 1975 classical methods were
no longer even studied by a majority of students pursuing the doctoral degree in control. And
the theories of Horowitz were read by few. In early 1975, the stability margin concept had not
yet found its way into the mathematical problem formulations of modern control theorists.

Michael Athans,9 who had been of leading proponent of multiloop LQG feedback, was eager
to identify and fix the failings of LQG theory that had been so graphically illustrated by the
F-8C aircraft and the Trident submarine design studies. Progress was rapid and, unlike many
scientific revolutions, acceptance was almost immediate. By June 1975, Athans’ student P.K.
Wong had completed an MS thesis on the subject10 which laid much of the groundwork for the
emergent theory of multivariable stability margin. Following are some of the early milestones of
multivariable stability margin theory:

1975 Diagonally Structured Uncertainty. P. K. Wong10 formulated the multivariable
stability margin problem in terms of a matrix simultaneously varying uncertain real gains.
As a special case, he examined the case of a real diagonal uncertainty matrix.

LQ multivariable gain margins. Wong10 also proved that full-state feedback LQ
controllers have the remarkable property of a 50% gain reduction tolerance and an infinite
tolerant of gain increases in each of the control input channels even when the gain variations
occur simultaneously.

1976 LQ phase-margins. Applying the methods of input/output stability theory along with
Parseval’s theorem, Safonov and Athans11, 12 showed that Wong’s result could be extended
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from real uncertainties to frequency-dependent complex uncertainties. Multiloop LQ state-
feedback designs were shown to possess a tolerance of simultaneous phase variations of up
to ±60◦ in each control input channel.

Robustness. The term robust was introduced into the control theory vocabulary by E.
J. Davison13 who used it to describe asymptotic rejection of certain classes of disturbances
despite non-destabilizing plant variations. The usage of the word robustness to describe
multivariable stability margins originated with Safonov and Athans11.

Small-Gain/Positivity. In 1976, the use of the Zames-Sandberg14, 15, 3, 16 nonlinear
techniques for stability margin analysis was clearly demonstrated by Safonov and Athans11.
Previously, the Zames-Sandberg theory had been generally regarded as a purely nonlinear
theory.

1977 H∞ Control Theory. Building on the 1967 game-theory results of Reference 44, an
optimal small-gain feedback theory was developed by Mageirou and Ho17. Independently
rediscovered ten years later,18 the theory came to be known as the “game theory” or
“riccati” approach to H∞ control. But as of 1977, the term H∞ had not yet entered the
control lexicon.

The 1977 PhD thesis of Safonov19 (later published as Reference 20) included the following:

Canonical Robust Control Problem. The now standard robust control problem was
formulated in which a diagonal operator of uncertain internal gains is “pulled out”
as a multivariable feedback around a nominal system (cf. Reference 19, Figure 6.1).

Fundamental Stability Theorem. The problem of stability robustness analysis was
shown to be equivalent to computing a topological separation of graphs of feedback
operators. Lyapunov, conic sector, positivity and small-gain theories were shown to
emerge as special cases.

Frequency-Domain Robustness Criteria. Bode plots of eigenvalues were proposed
for evaluating the stability margins of diagonally perturbed multivariable feedback
systems (see Reference 19, Theorem 5.7).

1978 LQG Counterexample. J. C. Doyle21 demonstrated via a simple counterexample that
embedding a Kalman filter in an LQG controller may cause stability margins to become
vanishingly small.

Singular Values. After a spending a year as a half-time adjunct professor at MIT,
G. Stein assembled a team of consultants consisting of N. R. Sandell, J. C. Doyle, and
M. G. Safonov at the Honeywell Systems and Research Center, Minneapolis, MN, USA.
Influenced by discussions with MIT’s A. J. Laub on the uses of singular values in the theory
of matrix computations, the team of Honeywell consultants adopted the now familiar
singular-value Bode plot representation of the multivariable stability margin results of
Reference 19. Though singular-value stability conditions were new to the control field, very
similar representations of small-gain conditions had been proposed for nonlinear stability
analysis as early as 1964 by Sandberg14.
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Allerton. The singular-value robustness theory publicly debuted at the 1978 Allerton
Conference in a special session22 devoted to singular value robustness analysis. Featured
speakers were A. J. Laub, N. R. Sandell, G. Stein, J. C. Doyle, M. G. Safonov and B. C.
Moore.

Kharitonov’s Theorem. A simple test for stability in the presence of simultaneous
real variations in the coefficients of a systems’ characteristic polynomial was developed.23

1979 Linear Robustness. Aware of the intimidating nature of nonlinear theories, Doyle24

expanded the audience for the multivariable stability margin concept by specializing the
singular-value stability margin results to linear systems and by developing alternative
proofs based on Rosenbrock’s multivariable Nyquist stability criterion.

Principal Gains. In a parallel development, MacFarlane and Scott-Jones25 created a
theory in which singular values emerged under the name “principal gains.”

One-loop-at-a-time Counterexample. Doyle24 produced a simple but compelling ex-
ample which clearly demonstrated the pitfalls of traditional one-loop-at-a-time stability
margin analysis and the advantages of singular-value Bode plots.

ONR Robustness Workship. To digest and disseminate the rapid progress on mul-
tivariable stability margin, N.R. Sandell organized an international workshop1. Included
among the more than 30 participants were E. Armstrong, M. Athans, C. A. Desoer, J.
C. Doyle, I. Horowitz, H. Kwakernaak, A. J. Laub, N. Lehtomaki, B. C. Moore, C. L.
Nefzger, I. Postlethwaite, C. Rohrs, M. G. Safonov, R. Sivan, N. R. Sandell, G. Stein, and
J. C. Willems.

1980 Diagonal Scaling. As was well-known to workers on robustness, diagonal scalings
had been used in nonlinear stability theory to reduce the conservativeness of small-gain
stability tests — see, for example, the surveys in Reference 26, Section III and Reference
27. In 1980, several authors wrote papers examining the role of diagonal scaling to singular
value robustness tests.20, 28, 29, 30

km Notation. Prior to 1980, various upper bounds on the multivariable stability
margin had been introduced, but notation for the actual multivariable stability margin
itself had not yet been formally introduced. In Reference 29 (later published as References
31, 32), the diagonally-perturbed multivariable stability margin was given the name “excess
stability margin” and labeled km.

Rohrs counterexample. The turmoil of the robustness revolution spread to adaptive
control when studies at MIT showed then standard adaptive control algorithms to have
vanishingly small robustness.45, 46

1981 Optimization of Singular Values. At Berkeley, E. Polak and D. Q. Mayne33 examined
the use of generalized gradient methods to optimize singular values.

Mixed-Sensitivity and H2 Synthesis. The mixed roles of sensitivity and comple-
mentary sensitivity in robust control were identified by Safonov.34 To manipulate mixed-
sensitivity singular value Bode plots, the classical Wiener-Hopf frequency-domain repre-
sentation of the LQG problem with frequency-dependent weighting matrices was found to
be useful. Later the Wiener-Hopf formulation of LQG theory would come to be known as
H2 control.35
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H∞ Optimal Control Synthesis. G. Zames introduced the the Hardy space H∞
to tthe control field and solved a very simple SISO H∞ control problem. Eventually,
multivariable versions of this theory would largely supplant the Wiener-Hopf H2 theory
as a tool for manipulating robustness singular value Bode plots.

Neoclassical Control. Solidifying the links to the classical theory of Bode, Lehtomaki
and Athans36 further examined connections between singular values and multiloop gain/phase
margins and Doyle and Stein37 proposed a singular-value loop-shaping formulation of the
robust feedback synthesis problem.

1982 The n ≤ 3 Result. Adopting the generalized gradient techniques of Reference 33,
Doyle38 showed for the case in which there are three or fewer complex uncertainties that
optimally scaled singular values give the exact value of km. Safonov and Doyle39, 40 subse-
quently showed that the optimal diagonal scaling problem is convex and therefore solvable.

µ Notation. In Reference 38, Doyle introduced the term structured singular value for
the reciprocal of km and associated with it the Greek letter µ. The paper38 also contained
a pithy summary of known results, but relatively few citations.

Performance Robustness. Doyle, Wall and Stein41 observed that the small-gain
stability theorem can be reinterpreted as a performance robustness theorem. They pointed
out that “fictitious uncertainties” can be used to embed performance specifications within
the framework of multivariable stability margin analysis.

After 1982 the field of multivariable stability margin theory blossomed, as may be seen from
the many references in References 42 and 43. The innovative contributions of seven papers in
this special issue demonstrate the continued vibrancy and richness of the field spawned by the
revolution that began in 1975 in the MIT lab of Michael Athans.
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