
TO APPEAR IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997 1

The Unfalsi�ed Control Concept and Learning

Michael G. Safonov and Tung-Ching Tsao

Abstract|Without a plant model or other prejudicial assump-

tions, theory is developed for identifying control laws which are

consistent with performance objectives and past experimental

data | possibly before the control laws are ever inserted in the

feedback loop. The theory complements model-based methods

such as H-in�nity robust control theory by providing a precise

characterization of how the set of suitable controllers shrinks

when new experimental data is found to be inconsistent with

prior assumptions or earlier data. When implemented in real

time, the result is an adaptive switching controller. An example

is included.

.

I. Introduction

Commenting on the limits of the knowable, philosopher Karl
Popper [1] said, \The Scientist . . . can never know for certain
whether his theory is true, although he may sometimes estab-
lish . . . a theory is false." Discovery in science is a process of
elimination of hypotheses which are falsi�ed by experimental
evidence. The present paper concerns how Popper's falsi�ca-
tion concept may be applied to the development of a theory for
discovering good controllers from experimental data without re-
liance on feigned hypotheses or prejudicial assumptions about
the plant, sensors, uncertainties or noises.
Closely related previous e�orts [2]{[10] to develop carefully

reasoned methods for incorporating experimental data into the
control design process have centered on an indirect two-step de-
composition of the problem involving (i) identifying of a plant
model and uncertainty bounds, then (ii) designing a robust
controller for the uncertain model. These methods have the
desirable property that they lead to controllers that are not-
demonstrably-unrobust, based solely on the available experimen-
tal evidence. However, such methods fall short of the goal of
providing an exact mathematical characterization of the class
of not-demonstrably-unrobust controllers. The problem is that
assumed uncertainty-structures lead to uncertain models that
upper-bound | but do not exactly characterize | plant be-
haviors observed in the data. This results in over-designed con-
trollers whose ability to control is unfalsi�ed not only by the ob-
served experimental data, but also by other behaviors of which
the plant is incapable.
In the present paper, we dispense with assumptions about

uncertainty structure and tackle the problem of directly identi-
fying the set of controllers which, based on experimental data
alone, are not-demonstrably-unrobust. Our approach is to look
for inconsistencies between the constraints on signals each can-
didate controller would introduce if inserted in the feedback
loop and the constraints with associated performance objectives
and constraints implied by the experimental data. When incon-
sistencies exist among these constraints, then the controller is
said to be falsi�ed; otherwise it is unfalsi�ed. In essence, it
is a feedback generalization of the open-loop model validation
schemes used in control-oriented identi�cation. The result is a
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paradigm for direct identi�cation of not-demonstrably-unrobust
controllers which we call the unfalsi�ed control concept.
A preliminary version of our unfalsi�ed control work appeared

in [11]. Connections with model validation are further examined
in [12]. Reference [13] o�ers a non-technical discussion of some
of the broader implications of our theory with regard to an age
old philosophical debate on the relative merits of observation
verses prior knowledge in science.

II. Learning

Consider the feedback control system in Figure 1. Our goal is
to determine a control law K for a plant P so that the closed-loop
system response, say T, satis�es a speci�cation requiring that,
for all command inputs r 2 R, the triple (r; y; u) be in a given
speci�cation set Tspec. The need for learning (i.e., controller
identi�cation) arises when the plant and, hence, the solutions
(r; y; u) are either unknown or are only partially known and one
wishes to extract information from measurements which will be
helpful in selecting a suitable control law K. Learning takes
place when the available experimental evidence enables one to
falsify a hypothesis about feedback controller's ability to meet a
performance speci�cation. Formally, we introduce the following
de�nition.

De�nition : A controller K 2 K is said to be falsi�ed by
measurement information if this information is su�cient to de-
duce that the performance speci�cation (r; y; u) 2 Tspec 8r 2 R
would be violated if that controller were in the feedback loop.
Otherwise, the control law K is said to be unfalsi�ed. 2

The future is never certain and even the past may be impre-
cisely known. We consider the situation that arises when exper-
imental observations give incomplete information about (u; y).
More precisely, we suppose that all that can be deduced from
measurements available at time t = � is a set, say Mdata, con-
taining the actual plant input-output pair (u; y). For example,
in this case of perfect past measurements (udata(t); ydata(t)) for
t � � , the set Mdata becomes

Mdata =

�
(u; y) 2 U � Y P�

�
(u� udata)
(y � ydata)

�
= 0

�
(1)

and P� is the familiar time-truncation operator of input-output
stability theory [14], [15], viz.,

[P�x](t)
�
=

�
x(t); if t � �
0; if t > �

It is convenient to associate with the set Mdata the following
embedding in R�Y � U .

De�nition (Measurement Information Set) The set

Pdata
�
=
�

(r; y; u) 2 R� Y � U (u; y) 2Mdata

	
is called the measurement information set at time � . 2

The signi�cance of Pdata is it that, if one were given only experi-
mental measurement information (viz. (u; y) 2Mdata), then the
strongest statement one could make about the triple (r; y; u)
is that (r; y; u) 2 Pdata. Of course, stronger statements are
possible when a known control law or a partially known plant
model introduces further constraints on the triple (r; y; u). The
present paper is primarily concerned with statements which can
be made without the plant model information.
The unfalsi�ed control problem may be formally stated fol-

lows.
Problem 1 (Unfalsi�ed Control) Given

a) a measurement information set Pdata � R� Y � U ,
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b) a performance speci�cation set Tspec � R� Y � U , and

c) a class K of admissible control laws,

determine the subset of KOK of control laws K 2 K whose
ability to meet the speci�cation (r; y; u) 2 Tspec 8r 2 R is not
falsi�ed by the measurement information Pdata. 2

We consider the plant P and the controller K to be relations
in R�Y � U (cf. [15], [16]):

P � R� Y � U ; K � R� Y � U

That is, both the plant P and the controller K are regarded as
a locus or \graph" in R�Y � U , viz.,

P =
�

(r; y; u) 2 R� Y � U y = Pu
	

K =

�
(r; y; u) 2 R� Y � U u = K

�
r
y

� �
:

On the other hand, experimental information Pdata from a
plant corresponds to partial knowledge of the constraint P |
viz., an \interpolation constraint" on the graph of P.

When all that is known about a plant P is measurement in-
formation Pdata, the following theorem provides a basis for the
solution to Problem 1.

Theorem 1 (Unfalsi�ed Control) Consider Problem 1. A
control law K is unfalsi�ed by measurement information Pdata
if, and only if, for each triple (r0; y0; u0) 2 Pdata \ K, there
exists at least one pair (u1; y1) such that

(r0; y1; u1) 2 Pdata \K \Tspec: (2)

Proof: With controller K in the loop, a command signal
r0 2 R could have produced the measurement information if,
and only if, (r0; y0; u0) 2 Pdata \ K for some (u0; y0). The
controller K is unfalsi�ed if and only if for each such r0 there
is at least one (possibly di�erent) pair (u1; y1) which also could
have produced the measurement information with K in the loop
and which additionally satis�es the performance speci�cation
(r0; y1; u1) 2 Tspec. That is, K is unfalsi�ed if and only if for
each such r0, condition (2) holds.

Theorem 1 constitutes a mathematically precise statement of
what it means for experimental data and a performance spec-
i�cation to be inconsistent with a particular controller. It has
some interesting implications:

� Theorem 1 is nonconservative; i.e., it gives \if and only if"
conditions on K. It uses all the information in the past data |
and no more. It provides a mathematically precise \sieve" which
rejects any controller which, based on experimental evidence, is
demonstrably incapable of meeting a given performance speci-
�cation.
� Theorem 1 is \model free". No plant model is needed to test
its conditions. There are no assumptions about the plant.
� Information Pdata which invalidates a particular controller
K need not have been generated with that controller in the
feedback loop; it may be open loop data or data generated by
some other control law (which need not even be in K).
� When the sets Pdata, K and Tspec are each expressible in
terms of equations and/or inequalities, then falsi�cation of a
controller reduces to a minimax optimization problem. For some
forms of inequalities and equalities (e.g., linear or quadratic),
this optimization problem may be solved analytically, leading
to procedures for direct identi�cation of controllers | as the
example in Section V illustrates.

III. Adaptive Control

The step from Theorem 1 to adaptive control is, conceptually
at least, a small one. Simply choosing as the current control
law one that is not falsi�ed by the past data produces a control
law that is adaptive in the sense that it learns in real time and
changes based on what it learns.
Like the controllers of [17], [18], this approach to adaptive

real-time unfalsi�ed control leads to a sort of \switching con-
trol." Controllers which are determined to be incapable of sat-
isfactory performance are switched out of the feedback loop and
replaced by others which, based on the information in past data,
have not yet been found to be inconsistent with the perfor-
mance speci�cation. However, adaptive unfalsi�ed controllers
generally would not be expected to exhibit the poor transient
response associated with switching methods such as [17]. The
reason is that, unlike the theory in [17], unfalsi�ed control the-
ory e�ciently eliminates broad classes of controllers before they
are ever inserted in the feedback loop. The main di�erence be-
tween unfalsi�ed control and other adaptive methods is that
in unfalsi�ed control one evaluates candidate controllers objec-
tively based on experimental data alone, without prejudicial
assumptions about the plant.
While, in principle, the unfalsi�ed control theory allows for

the set K to include continuously parameterized sets of con-
trollers, restricting attention to candidate controller setsK with
only a �nite number of elements can simplify computations.
Further simpli�cations result by restricting attention to candi-
date controllers that are \causally-left-invertible" in the sense
that, given a K 2 K, the current value of r(t) is uniquely de-
termined by past values of u(t); y(t). When (1) holds, these
restrictions on Tspec and K are su�cient to permit the unfalsi-
�ed set to be evaluated in real-time via the following conceptual
algorithm.

Algorithm 1 (Recursive Adaptive Control)
Input:

� A �nite set K of m candidate dynamical controllers
Ki(r; y; u) = 0; (i = 1; : : : ;m) each having the causal-left-
invertibility property that r(t) is uniquely determined from
Ki(r; y; u) = 0 by past values of u(t); y(t).
� Sampling interval �t and current time � = n�t;
� Plant data (u(t); y(t)); t 2 [0; � ];
� Performance speci�cation set Tspec consisting of the set of
triples (r; y; u) satisfying the inequalitiesZ k�t

0

~Tspec(r(t); y(t); u(t); t) dt � 0; 8k = 1; : : : ; n:

Initialize:

set k = 0, set bi = m;
for i = 0 : m, set s(i) = 1, set ~J(i) = 0, end.

Procedure:

while bi > 0;
k = k + 1;
for i = 1 : m;
if s(i) > 0;
for each t 2 [(k � 1)�t; k�t];
solve Ki(r; y; u) = 0 for r(t);
(note that r(t) exists and is unique since Ki has
the causal-left-invertibility property)

end;
~J(i) = ~J(i) +

R k�t

(k�1)�t
~Tspec(r(t); y(t); u(t); t) dt;

if ~J(i) > 0, set s(i) = 0, end;
end;

end;
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bi = max
�

i s(i) > 0
	
;

end.

This algorithm returns for each time the least index bi for
which Kbi is unfalsi�ed by the past plant data. Real-time un-

falsi�ed adaptive control is achieved by always taking as the
currently active controller

bK �
= Kbi

provided that the data does not falsify all candidate controllers.
In this latter case, the algorithm terminates and returns bi = 0.
We stress that while the above algorithm is geared towards

the case of an integral inequality performance criterion Tspec

and a �nite set of causally-left-invertible Ki's, the underlying
theory is, in principle, applicable to arbitrary non-�nite con-
troller sets K and to hybrid systems with both discrete and
continuous time elements.

Comment : If the plant is slowly time-varying, then older
data ought to be discarded before evaluating controller falsi�ca-
tion. This may be e�ected within the context of our Algorithm
1 by �xing � = �0 and regarding t��0 as the deviation from the
current time. The result is a an algorithm which only considers
data from moving time-window of �xed duration �0 time-units
prior to the current real-time. In this case the unfalsi�ed con-
troller set KOK no longer shrinks monotonically as it would if
� were increasing in lockstep with real-time.

IV. Practical Considerations

Practical application of Theorem 1 requires that one have
characterizations of the setsK and Tspec which are both simple
and amenable to computations. In the control �eld, experience
has shown that linear equations and quadratic cost functions
often lead to tractable problems. A linear parameterization of
the set K of admissible control laws is possible by representing
each K 2 K as a sum of �lters, say Qi(s), so that the control
laws K 2K are linearly parameterized by an unspeci�ed vector
� 2 IRn; i.e.,

K� =
�

(r; y; u) K�(r(s); y(s); u(s)) = 0
	

(3)

where the argument (s) indicates Laplace transformation and

K�(r(s); y(s); u(s)) = �0Q(s)

"
r(s)
y(s)
u(s)

#
8� 2 IRn: (4)

Thus,

K =
[

�2IRn
fK�g:

The performance speci�cation set Tspec might be selected to
be a collection of quadratic inequalities, expressed in terms of
L2 inner-products weighted by a given transfer function matrix,
say Tspec(s); e.g.,

Tspec = sector(Tspec)
�
=�

(r; y; u) 2 L2e hz1; z2i� � 0 8� 2 [0;1)
	

(5)

where
hz1; z2i�

�
= hP�z1;P�z2iL2[0;1)

and �
z1(s)
z2(s)

�
= Tspec(s)

"
r(s)
y(s)
u(s)

#
:

Here, as elsewhere, the argument (s) indicates Laplace trans-
formation. Note that sets of the type sector(Tspec) have been
studied by Safonov [16]; such sets are a generalization of the
Zames-Sandberg [14], [15] L2e conic sector

sector(a; b)
�
=
�

(u; y) hy � au; y � bui� � 0 8� � 0
	
:

The example in the following section illustrates some of the
foregoing ideas.

V. Example

In this section we describe a simulation study involving an
adaptive unfalsi�ed control design based on Algorithm 1. Sim-
ulation data is generated in closed-loop operation by the follow-
ing time-varying model:

P = (G) (1 + �(s)) (6)

where �(s) = 2s2+2s+10
s2+2s+100

and G is an unstable time-varying

system with its input u and output x satisfying dx
dt
(t) = (1 +

0:5 sin 8t)x(t)+(1+0:5 sin 20t)u(t). Note that the control design
itself is entirely model-free in that the control design proceeds
without any speci�c information about the above plant model
other than past input/output data. The simulation shows that
the algorithm converges after a �nite number of switches to a
linear time-invariant control law in the unfalsi�ed set KOK .
The performance speci�cation set Tspec is taken to be the set

of (r; y; u) 2 L2e � L2e � L2e which for all � � 0 satisfy the
inequality (cf. eqn. (5))

kw1 � (y � r)k2L2[0;� ] + kw2 � uk
2
L2[0;� ]

� krk2L2[0;� ]: (7)

It says that the error signal r�y and the control signal u should
be \small" compared to the command signal r; the dynamical
\weights" w1 and w2 determine what is small. If the plant
were linear time-invariant, it would be equivalent to the familiar
H1 weighted mixed-sensitivity performance criterion (e.g., [19],
[20]) 



� W1S

W2KS

�




1

� 1

where S
�
= 1=(1 + PK) is the Bode sensitivity function.

In (7), w1(t) and w2(t) are the impulse responses of stable
minimum phase weighting transfer functions W1(s) and W2(s)
respectively, \�" means convolution, r is the input reference
signal, y is the plant output signal, and u is the control signal.
In keeping with (3){(4), the set K of admissible controllers

is chosen to be

0 = �0Q(s)

"
r(s)
y(s)
u(s)

#
(8)

where � 2 IR5,

Q(s) =

26664
0 0 H(s)
0 H(s) 0
0 1 0
1 0 0
0 0 �1

37775 and H(s) =
:5

s+ :5
:

See Figure 2. Without loss of generality, we chose �5 = 1: Note
that there is not any special motivation for the particular forms
of Q(s) and H(s) given above, save that they happen to be such
that for each admissible control gain vector �, it easy to solve
(8) uniquely for the corresponding past P�r of r(t) in terms of
� and the past plant data data u(t); y(t). Also, we chose not to
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consider more than �ve adjustable control gains �i, to ensure
that the computations are tractable.
The simulation was conducted as follows. At each time �

a control law in K�̂(�) 2 K was connected to the simulation

model (6) where �̂(�) denotes the value of � associated with the

controller in use at time � . The value of �̂(�) was held constant
until such time as it is falsi�ed by the past data (P�u;P�y),
then it is switched to a point near the geometric center of the
current unfalsi�ed controller parameter set. The controller state
was left unchanged at these switching times. The following were
used in the simulation:
� W1(s) =

s+3:5
s+:35

, W2(s) =
:01

(s+1)3

� Unit step command: r(t) = 1 8t � 0
� Initial conditions at time � = 0 are all zero.
� Set intersections are performed every 0.2 sec.
� We arbitrarily restricted our search for unfalsi�ed control laws
as follows:

�̂21 + �̂22 � 1002; j�̂3j � 350; 100 � �̂4 � 700

� We arbitrarily initialized: �̂(0) = [0; 0; 0; 400; 1]T

The simulation was carried out by using Simulink. The re-
sults are shown in Figure 3. From the plots, one can see that
the parameter vector switches three times (at 0.2, 2, 82.4 sec),
and despite the time-varying perturbations the vector converges
within �nite time to the steady-state value: limt!1 �̂(t) =
[2:0009;�31:471;�218:75; 250:00; 1]T . The convergent nom-
inal steady-state command-to-error transfer function Tr�y;r,

with nominal plant 1
s�1

2s2+2s+10
s2+2s+100

, satis�es jTr�y;r(j!)j <

jW�1
1 (j!)j; 8!. The initial overshoot of plant output is due to

the instability of the open loop system and that the �rst control
parameter updating can only occur after performing the �rst set
intersection operation at the time 0.2 sec. Although the perfor-
mance speci�cation is achieved after about 72 sec, the ratio

1

krkL2[0;t]

q
kW1(y � r)k2

L2[0;t]
+ kW2uk2L2[0;t]

approaches one rapidly, which means good transient behavior.
Further details about �nite time parameter convergence and
performance of unfalsi�ed control systems can be found in [10].
Figure 4 shows the evolution of the unfalsi�ed controller para-

meter set. Since a set in IR5 cannot be visualized, the projection
of the set to [�1; �2; �3]-space with �4 = 260 and �5 = 1 is shown.

VI. Conclusions

Departing from the traditional practice in mathematical con-
trol theory of identifying assumptions required to prove desired
conclusions, we have focused attention instead on what is know-
able from experimental data alone without assuming anything
about the plant. This does not mean that we believe that plant
models ought to be abandoned. But our results do demonstrate
that there is merit in asking what information and conclusions
can be derived without them.
In our unfalsi�ed control theory, decisions about which con-

trol laws are suitable are made based on actual values of sen-
sor output signals and actuator input signals. In this process
the role, if any, of plant models and of probabilistic hypothe-
ses about stochastic noise and random initial conditions is en-
tirely an a priori role: These provide concepts which are use-
ful in selecting the class K of candidate controllers and in se-
lecting achievable goals (i.e., selecting Tspec). The methods of
traditional model-based control theories (root locus, stochas-
tic optimal control, Bode-Nyquist theory, and so forth) provide

mechanizations of this prior selection and narrowing process.
Unfalsi�ed control takes over where the model-based methods
leave o�, providing a mathematical framework for determining
the proper consequences of experimental observations on the
choice of control law. In e�ect, the theory gives one a model-
free mathematical \sieve" for candidate controllers, enabling us
(i) to precisely identify what of relevance to attaining the spec-
i�cation Tspec can be discovered from experimental data alone
and (ii) to clearly distinguish the implications of experimental
data from those of assumptions and other prior information.

The unfalsi�ed control concept embodied in Theorem 1 is of
importance to adaptive control theory because it provides an ex-
act characterization of what can, and what cannot, be learned
from experimental data about the ability of a given class of
controllers to meet a given performance speci�cation. A salient
feature of the theory is that the data used to falsify a class
of control laws may be either open-loop data or data obtained
with other controllers in the feedback loop. Consequently, con-
trollers need not be actually inserted in the feedback loop to
be falsi�ed. This is important because it means that adaptive
unfalsi�ed controllers should be signi�cantly less susceptible to
poor transient response than adaptive algorithms which require
inserting controllers in the loop one-at-a-time to determine if
they are unsuitable.

A noteworthy feature of the unfalsi�ed control theory is its

exibility and simplicity of implementation. Controller falsi�-
cation typically involves only real-time integration of algebraic
functions of the observed data, with one set of integrators for
each candidate controller. The theory may be readily applied to
nonlinear time-varying plants, as well as to linear time-invariant
ones.
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Fig. 1. Learning control system.
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Fig. 3. Simulation results.
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Fig. 4. Evolution of unfalsi�ed controller parameter set.


